16,598 research outputs found

    A fast algorithm for detecting gene-gene interactions in genome-wide association studies

    Full text link
    With the recent advent of high-throughput genotyping techniques, genetic data for genome-wide association studies (GWAS) have become increasingly available, which entails the development of efficient and effective statistical approaches. Although many such approaches have been developed and used to identify single-nucleotide polymorphisms (SNPs) that are associated with complex traits or diseases, few are able to detect gene-gene interactions among different SNPs. Genetic interactions, also known as epistasis, have been recognized to play a pivotal role in contributing to the genetic variation of phenotypic traits. However, because of an extremely large number of SNP-SNP combinations in GWAS, the model dimensionality can quickly become so overwhelming that no prevailing variable selection methods are capable of handling this problem. In this paper, we present a statistical framework for characterizing main genetic effects and epistatic interactions in a GWAS study. Specifically, we first propose a two-stage sure independence screening (TS-SIS) procedure and generate a pool of candidate SNPs and interactions, which serve as predictors to explain and predict the phenotypes of a complex trait. We also propose a rates adjusted thresholding estimation (RATE) approach to determine the size of the reduced model selected by an independence screening. Regularization regression methods, such as LASSO or SCAD, are then applied to further identify important genetic effects. Simulation studies show that the TS-SIS procedure is computationally efficient and has an outstanding finite sample performance in selecting potential SNPs as well as gene-gene interactions. We apply the proposed framework to analyze an ultrahigh-dimensional GWAS data set from the Framingham Heart Study, and select 23 active SNPs and 24 active epistatic interactions for the body mass index variation. It shows the capability of our procedure to resolve the complexity of genetic control.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS771 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Feature Screening via Distance Correlation Learning

    Full text link
    This paper is concerned with screening features in ultrahigh dimensional data analysis, which has become increasingly important in diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS, for short). The DC-SIS can be implemented as easily as the sure independence screening procedure based on the Pearson correlation (SIS, for short) proposed by Fan and Lv (2008). However, the DC-SIS can significantly improve the SIS. Fan and Lv (2008) established the sure screening property for the SIS based on linear models, but the sure screening property is valid for the DC-SIS under more general settings including linear models. Furthermore, the implementation of the DC-SIS does not require model specification (e.g., linear model or generalized linear model) for responses or predictors. This is a very appealing property in ultrahigh dimensional data analysis. Moreover, the DC-SIS can be used directly to screen grouped predictor variables and for multivariate response variables. We establish the sure screening property for the DC-SIS, and conduct simulations to examine its finite sample performance. Numerical comparison indicates that the DC-SIS performs much better than the SIS in various models. We also illustrate the DC-SIS through a real data example.Comment: 32 pages, 5 tables and 1 figure. Wei Zhong is the corresponding autho
    • …
    corecore