111 research outputs found

    MetaAge: Meta-Learning Personalized Age Estimators

    Full text link
    Different people age in different ways. Learning a personalized age estimator for each person is a promising direction for age estimation given that it better models the personalization of aging processes. However, most existing personalized methods suffer from the lack of large-scale datasets due to the high-level requirements: identity labels and enough samples for each person to form a long-term aging pattern. In this paper, we aim to learn personalized age estimators without the above requirements and propose a meta-learning method named MetaAge for age estimation. Unlike most existing personalized methods that learn the parameters of a personalized estimator for each person in the training set, our method learns the mapping from identity information to age estimator parameters. Specifically, we introduce a personalized estimator meta-learner, which takes identity features as the input and outputs the parameters of customized estimators. In this way, our method learns the meta knowledge without the above requirements and seamlessly transfers the learned meta knowledge to the test set, which enables us to leverage the existing large-scale age datasets without any additional annotations. Extensive experimental results on three benchmark datasets including MORPH II, ChaLearn LAP 2015 and ChaLearn LAP 2016 databases demonstrate that our MetaAge significantly boosts the performance of existing personalized methods and outperforms the state-of-the-art approaches.Comment: Accepted by IEEE Transactions on Image Processing (TIP

    OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal Regression

    Full text link
    This paper presents a language-powered paradigm for ordinal regression. Existing methods usually treat each rank as a category and employ a set of weights to learn these concepts. These methods are easy to overfit and usually attain unsatisfactory performance as the learned concepts are mainly derived from the training set. Recent large pre-trained vision-language models like CLIP have shown impressive performance on various visual tasks. In this paper, we propose to learn the rank concepts from the rich semantic CLIP latent space. Specifically, we reformulate this task as an image-language matching problem with a contrastive objective, which regards labels as text and obtains a language prototype from a text encoder for each rank. While prompt engineering for CLIP is extremely time-consuming, we propose OrdinalCLIP, a differentiable prompting method for adapting CLIP for ordinal regression. OrdinalCLIP consists of learnable context tokens and learnable rank embeddings; The learnable rank embeddings are constructed by explicitly modeling numerical continuity, resulting in well-ordered, compact language prototypes in the CLIP space. Once learned, we can only save the language prototypes and discard the huge language model, resulting in zero additional computational overhead compared with the linear head counterpart. Experimental results show that our paradigm achieves competitive performance in general ordinal regression tasks, and gains improvements in few-shot and distribution shift settings for age estimation. The code is available at https://github.com/xk-huang/OrdinalCLIP.Comment: Accepted by NeurIPS2022. Code is available at https://github.com/xk-huang/OrdinalCLI

    DiffTalk: Crafting Diffusion Models for Generalized Audio-Driven Portraits Animation

    Full text link
    Talking head synthesis is a promising approach for the video production industry. Recently, a lot of effort has been devoted in this research area to improve the generation quality or enhance the model generalization. However, there are few works able to address both issues simultaneously, which is essential for practical applications. To this end, in this paper, we turn attention to the emerging powerful Latent Diffusion Models, and model the Talking head generation as an audio-driven temporally coherent denoising process (DiffTalk). More specifically, instead of employing audio signals as the single driving factor, we investigate the control mechanism of the talking face, and incorporate reference face images and landmarks as conditions for personality-aware generalized synthesis. In this way, the proposed DiffTalk is capable of producing high-quality talking head videos in synchronization with the source audio, and more importantly, it can be naturally generalized across different identities without any further fine-tuning. Additionally, our DiffTalk can be gracefully tailored for higher-resolution synthesis with negligible extra computational cost. Extensive experiments show that the proposed DiffTalk efficiently synthesizes high-fidelity audio-driven talking head videos for generalized novel identities. For more video results, please refer to \url{https://sstzal.github.io/DiffTalk/}.Comment: Project page https://sstzal.github.io/DiffTalk

    Absence of Appl2 sensitizes endotoxin shock through activation of PI3K/Akt pathway

    Get PDF
    BACKGROUND: The adapter proteins Appl1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif 1) and Appl2 are highly homologous and involved in several signaling pathways. While previous studies have shown that Appl1 plays a pivotal role in adiponectin signaling and insulin secretion, the physiological functions of Appl2 are largely unknown. RESULTS: In the present study, the role of Appl2 in sepsis shock was investigated by using Appl2 knockout (KO) mice. When challenged with lipopolysaccharides (LPS), Appl2 KO mice exhibited more severe symptoms of endotoxin shock, accompanied by increased production of proinflammatory cytokines. In comparison with the wild-type control, deletion of Appl2 led to higher levels of TNF-α and IL-1β in primary macrophages. In addition, phosphorylation of Akt and its downstream effector NF-κB was significantly enhanced. By co-immunoprecipitation, we found that Appl2 and Appl1 interacted with each other and formed a complex with PI3K regulatory subunit p85α, which is an upstream regulator of Akt. Consistent with these results, deletion of Appl1 in macrophages exhibited characteristics of reduced Akt activation and decreased the production of TNFα and IL-1β when challenged by LPS. CONCLUSIONS: Results of the present study demonstrated that Appl2 is a critical negative regulator of innate immune response via inhibition of PI3K/Akt/NF-κB signaling pathway by forming a complex with Appl1 and PI3K.published_or_final_versio
    corecore