1,127 research outputs found
Efficient Learning for Undirected Topic Models
Replicated Softmax model, a well-known undirected topic model, is powerful in
extracting semantic representations of documents. Traditional learning
strategies such as Contrastive Divergence are very inefficient. This paper
provides a novel estimator to speed up the learning based on Noise Contrastive
Estimate, extended for documents of variant lengths and weighted inputs.
Experiments on two benchmarks show that the new estimator achieves great
learning efficiency and high accuracy on document retrieval and classification.Comment: Accepted by ACL-IJCNLP 2015 short paper. 6 page
Parameter Sensitivity Analysis of Social Spider Algorithm
Social Spider Algorithm (SSA) is a recently proposed general-purpose
real-parameter metaheuristic designed to solve global numerical optimization
problems. This work systematically benchmarks SSA on a suite of 11 functions
with different control parameters. We conduct parameter sensitivity analysis of
SSA using advanced non-parametric statistical tests to generate statistically
significant conclusion on the best performing parameter settings. The
conclusion can be adopted in future work to reduce the effort in parameter
tuning. In addition, we perform a success rate test to reveal the impact of the
control parameters on the convergence speed of the algorithm
Base Station Switching Problem for Green Cellular Networks with Social Spider Algorithm
With the recent explosion in mobile data, the energy consumption and carbon
footprint of the mobile communications industry is rapidly increasing. It is
critical to develop more energy-efficient systems in order to reduce the
potential harmful effects to the environment. One potential strategy is to
switch off some of the under-utilized base stations during off-peak hours. In
this paper, we propose a binary Social Spider Algorithm to give guidelines for
selecting base stations to switch off. In our implementation, we use a penalty
function to formulate the problem and manage to bypass the large number of
constraints in the original optimization problem. We adopt several randomly
generated cellular networks for simulation and the results indicate that our
algorithm can generate superior performance
- …