3,075 research outputs found

    Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow

    Get PDF
    This paper considers the noisy sparse phase retrieval problem: recovering a sparse signal x∈Rpx \in \mathbb{R}^p from noisy quadratic measurements yj=(ajβ€²x)2+Ο΅jy_j = (a_j' x )^2 + \epsilon_j, j=1,…,mj=1, \ldots, m, with independent sub-exponential noise Ο΅j\epsilon_j. The goals are to understand the effect of the sparsity of xx on the estimation precision and to construct a computationally feasible estimator to achieve the optimal rates. Inspired by the Wirtinger Flow [12] proposed for noiseless and non-sparse phase retrieval, a novel thresholded gradient descent algorithm is proposed and it is shown to adaptively achieve the minimax optimal rates of convergence over a wide range of sparsity levels when the aja_j's are independent standard Gaussian random vectors, provided that the sample size is sufficiently large compared to the sparsity of xx.Comment: 28 pages, 4 figure

    Global testing against sparse alternatives in time-frequency analysis

    Get PDF
    In this paper, an over-sampled periodogram higher criticism (OPHC) test is proposed for the global detection of sparse periodic effects in a complex-valued time series. An explicit minimax detection boundary is established between the rareness and weakness of the complex sinusoids hidden in the series. The OPHC test is shown to be asymptotically powerful in the detectable region. Numerical simulations illustrate and verify the effectiveness of the proposed test. Furthermore, the periodogram over-sampled by O(log⁑N)O(\log N) is proven universally optimal in global testing for periodicities under a mild minimum separation condition.Comment: Published at http://dx.doi.org/10.1214/15-AOS1412 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore