3,848 research outputs found

    Saturated ground vibration analysis based on a three-dimensional coupled train-track-soil interaction model

    Get PDF
    A novel three-dimensional (3D) coupled train-track-soil interaction model is developed based on the multi-body simulation (MBS) principle and finite element modeling (FEM) theory using LS-DYNA. The novel model is capable of determining the highspeed effects of trains on track and foundation. The soils in this model are treated as saturated media. The wheel-rail dynamic interactions under the track irregularity are developed based on the Hertz contact theory. This model was validated by comparing its numerical results with experimental results obtained from field measurements and a good agreement was established. The one-layered saturated soil model is firstly developed to investigate the vibration responses of pore water pressures, effective and total stresses, and displacements of soils under different train speeds and soil moduli. The multi-layered soils with and without piles are then developed to highlight the influences of multi-layered soils and piles on the ground vibration responses. The effects of water on the train-track dynamic interactions are also presented. The original insight from this study provides a new and better understanding into saturated ground vibration responses in high-speed railway systems using slab tracks in practice. This insight will help track engineers to inspect, maintain, and improve soil conditions effectively, resulting in a seamless railway operation

    StoryDroid: Automated Generation of Storyboard for Android Apps

    Full text link
    Mobile apps are now ubiquitous. Before developing a new app, the development team usually endeavors painstaking efforts to review many existing apps with similar purposes. The review process is crucial in the sense that it reduces market risks and provides inspiration for app development. However, manual exploration of hundreds of existing apps by different roles (e.g., product manager, UI/UX designer, developer) in a development team can be ineffective. For example, it is difficult to completely explore all the functionalities of the app in a short period of time. Inspired by the conception of storyboard in movie production, we propose a system, StoryDroid, to automatically generate the storyboard for Android apps, and assist different roles to review apps efficiently. Specifically, StoryDroid extracts the activity transition graph and leverages static analysis techniques to render UI pages to visualize the storyboard with the rendered pages. The mapping relations between UI pages and the corresponding implementation code (e.g., layout code, activity code, and method hierarchy) are also provided to users. Our comprehensive experiments unveil that StoryDroid is effective and indeed useful to assist app development. The outputs of StoryDroid enable several potential applications, such as the recommendation of UI design and layout code

    Point Process Methodology for On-line Spatio-temporal Disease Surveillance

    Get PDF
    The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics) project aims to use spatio-temporal statistical methods to identify anomalies in the space-time distribution of non-specific, gastrointestinal infections in the UK, using the Southampton area in southern England as a test-case. In this paper, we use the AEGISS project to illustrate how spatio-temporal point process methodology can be used in the development of a rapid-response, spatial surveillance system. Current surveillance of gastroenteric disease in the UK relies on general practitioners reporting cases of suspected food-poisoning through a statutory notification scheme, voluntary laboratory reports of the isolation of gastrointestinal pathogens and standard reports of general outbreaks of infectious intestinal disease by public health and environmental health authorities. However, most statutory notifications are made only after a laboratory reports the isolation of a gastrointestinal pathogen. As a result, detection is delayed and the ability to react to an emerging outbreak is reduced. For more detailed discussion, see Diggle et al. (2003). A new and potentially valuable source of data on the incidence of non-specific gastro-enteric infections in the UK is NHS Direct, a 24-hour phone-in clinical advice service. NHS Direct data are less likely than reports by general practitioners to suffer from spatially and temporally localized inconsistencies in reporting rates. Also, reporting delays by patients are likely to be reduced, as no appointments are needed. Against this, NHS Direct data sacrifice specificity. Each call to NHS Direct is classified only according to the general pattern of reported symptoms (Cooper et al, 2003). The current paper focuses on the use of spatio-temporal statistical analysis for early detection of unexplained variation in the spatio-temporal incidence of non-specific gastroenteric symptoms, as reported to NHS Direct. Section 2 describes our statistical formulation of this problem, the nature of the available data and our approach to predictive inference. Section 3 describes the stochastic model. Section 4 gives the results of fitting the model to NHS Direct data. Section 5 shows how the model is used for spatio-temporal prediction. The paper concludes with a short discussion

    GEOSTATISTICAL INFERENCE UNDER PREFERENTIAL SAMPLING

    Get PDF
    Geostatistics involves the fitting of spatially continuous models to spatially discrete data (Chil`es and Delfiner, 1999). Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non-preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration samples may be concentrated in areas thought likely to yield high-grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data and describe how this can be evaluated approximately using Monte Carlo methods. We present a model for preferential sampling, and demonstrate through simulated examples that ignoring preferential sampling can lead to seriously misleading inferences. We describe an application of the model to a set of bio-monitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the inferences
    • …
    corecore