5,056 research outputs found

    A statistical thin-tail test of predicting regulatory regions in the Drosophila genome

    Full text link
    Background: The identification of transcription factor binding sites (TFBSs) and cis-regulatory modules (CRMs) is a crucial step in studying gene expression, but the computational method attempting to distinguish CRMs from NCNRs still remains a challenging problem due to the limited knowledge of specific interactions involved. Methods: The statistical properties of cis-regulatory modules (CRMs) are explored by estimating the similar-word set distribution with overrepresentation (Z-score). It is observed that CRMs tend to have a thin-tail Z-score distribution. A new statistical thin-tail test with two thinness coefficients is proposed to distinguish CRMs from non-coding non-regulatory regions (NCNRs). Results: As compared with the existing fluffy-tail test, the first thinness coefficient is designed to reduce computational time, making the novel thin-tail test very suitable for long sequences and large database analysis in the post-genome time and the second one to improve the separation accuracy between CRMs and NCNRs. These two thinness coefficients may serve as valuable filtering indexes to predict CRMs experimentally. Conclusions: The novel thin-tail test provides an efficient and effective means for distinguishing CRMs from NCNRs based on the specific statistical properties of CRMs and can guide future experiments aimed at finding new CRMs in the post-genome time.Comment: arXiv admin note: substantial text overlap with arXiv:1402.533

    A statistical fat-tail test of predicting regulatory regions in the Drosophila genome

    Full text link
    A statistical study of cis-regulatory modules (CRMs) is presented based on the estimation of similar-word set distribution. It is observed that CRMs tend to have a fat-tail distribution. A new statistical fat-tail test with two kurtosis-based fatness coefficients is proposed to distinguish CRMs from non-CRMs. As compared with the existing fluffy-tail test, the first fatness coefficient is designed to reduce computational time, making the novel fat-tail test very suitable for long sequences and large database analysis in the post-genome time and the second one to improve separation accuracy between CRMs and non-CRMs. These two fatness coefficients may be served as valuable filtering indexes to predict CRMs experimentally

    Hypercomplex cross-correlation of DNA sequences

    Full text link
    A hypercomplex representation of DNA is proposed to facilitate comparing DNA sequences with fuzzy composition. With the hypercomplex number representation, the conventional sequence analysis method, such as, dot matrix analysis, dynamic programming, and cross-correlation method have been extended and improved to align DNA sequences with fuzzy composition. The hypercomplex dot matrix analysis can provide more control over the degree of alignment desired. A new scoring system has been proposed to accommodate the hypercomplex number representation of DNA and integrated with dynamic programming alignment method. By using hypercomplex cross-correlation, the match and mismatch alignment information between two aligned DNA sequences are separately stored in the resultant real part and imaginary parts respectively. The mismatch alignment information is very useful to refine consensus sequence based motif scanning
    • …
    corecore