950 research outputs found

    CPCP violation in charmed hadron decays into neutral kaons

    Full text link
    We find a new CPCP violating effect in charmed hadron decays into neutral kaons, which is induced by the interference between the Cabibbo-favored and doubly Cabibbo-suppressed amplitudes with the K0−K‟0K^{0}-\overline K^{0} mixing. It is estimated to be of order of O(10−3)\mathcal{O}(10^{-3}), much larger than the direct CPCP asymmetry, but missed in the literature. To reveal this new CPCP violation effect, we propose a new observable, the difference of the CPCP asymmetries in the D+→π+KS0D^{+}\to \pi^{+}K_S^0 and Ds+→K+KS0D_{s}^{+}\to K^{+} K_S^0 modes. Once the new effect is determined by experiments, the direct CPCP asymmetry then can be extracted and used to search for new physics.Comment: 6 pages, 3 figures. Contribution to the proceeding of The 15th International Conference on Flavor Physics & CP Violation, 5-9 June 2017, Prague, Czech Republi

    Implications on the first observation of charm CPV at LHCb

    Full text link
    Very recently, the LHCb Collaboration observed the CPCP violation (CPV) in the charm sector for the first time, with ΔACPdir≡ACP(D0→K+K−)−ACP(D0→π+π−)=(−1.54±0.29)×10−3\Delta A_{CP}^{\rm dir}\equiv A_{CP}(D^0\to K^+K^-)-A_{CP}(D^0\to \pi^+\pi^-)=(-1.54\pm0.29)\times10^{-3}. This result is consistent with our prediction of ΔACPSM=(−0.57∌−1.87)×10−3\Delta A_{CP}^{\rm SM}=(-0.57\sim -1.87)\times 10^{-3} obtained in the factorization-assisted topological-amplitude (FAT) approach in [PRD86,036012(2012)]. It implies that the current understanding of the penguin dynamics in charm decays in the Standard Model is reasonable. Motivated by the success of the FAT approach, we further suggest to measure the D+→K+K−π+D^+\to K^+K^-\pi^+ decay, which is the next potential mode to reveal the CPV of the same order as 10−310^{-3}.Comment: 10 page

    Branching ratios and direct CP asymmetries in D→PPD\to PP decays

    Full text link
    We propose a theoretical framework for analyzing two-body nonleptonic DD meson decays, based on the factorization of short-distance (long-distance) dynamics into Wilson coefficients (hadronic matrix elements of four-fermion operators). The parametrization of hadronic matrix elements in terms of several nonperturbative quantities is demonstrated for the D→PPD\to PP decays, PP denoting a pseudoscalar meson. We consider the evolution of Wilson coefficients with energy release in individual decay modes, and the Glauber strong phase associated with the pion in nonfactorizable annihilation amplitudes, that is attributed to the unique role of the pion as a Nambu-Goldstone boson and a quark-anti-quark bound state simultaneously. The above inputs improve the global fit to the branching ratios involving the ηâ€Č\eta' meson, and resolves the long-standing puzzle from the D0→π+π−D^0\to\pi^+\pi^- and D0→K+K−D^0\to K^+K^- branching ratios, respectively. Combining short-distance dynamics associated with penguin operators and the hadronic parameters determined from the global fit to branching ratios, we predict direct CP asymmetries, to which the quark loops and the scalar penguin annihilation give dominant contributions. In particular, we predict ΔACP≡ACP(K+K−)−ACP(π+π−)=−1.00×10−3\Delta A_{\rm CP}\equiv A_{\rm CP}(K^+K^-)-A_{\rm CP}(\pi^+\pi^-)=-1.00\times 10^{-3}, lower than the LHCb and CDF data.Comment: 17 pages, 3 figures, matches published versio

    Branching ratios and direct CP asymmetries in D→PVD\to PV decays

    Full text link
    We study the two-body hadronic D→PVD\to PV decays, where PP (VV) denotes a pseudoscalar (vector) meson, in the factorization-assisted topological-amplitude approach proposed in our previous work. This approach is based on the factorization of short-distance and long-distance dynamics into Wilson coefficients and hadronic matrix elements of four-fermion operators, respectively, with the latter being parametrized in terms of several nonperturbative quantities. We further take into account the ρ\rho-ω\omega mixing effect, which improves the global fit to the branching ratios involving the ρ0\rho^0 and ω\omega mesons. Combining short-distance dynamics associated with penguin operators and the hadronic parameters determined from the global fit to branching ratios, we predict direct CPCP asymmetries. In particular, the direct CPCP asymmetries in the D0→K0K‟∗0, K‟0K∗0D^0\to K^0\overline{K}^{*0},~\overline{K}^0K^{*0}, D+→π+ρ0D^+\to\pi^+\rho^0, and Ds+→K+ω, K+ϕD_s^+\to K^+\omega,~K^+\phi decays are found to be of O(10−3){\cal O}(10^{-3}), which can be observed at the LHCb or future Belle II experiment. We also predict the CPCP asymmetry observables of some neutral DD meson decays.Comment: 16 pages, 2 figure

    Spatiotemporal expression of the serine protease inhibitor, SERPINE2, in the mouse placenta and uterus during the estrous cycle, pregnancy, and lactation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SERPINE2, also known as glia-derived nexin or protease nexin-1, belongs to the serine protease inhibitor (SERPIN) superfamily. It is one of the potent serpins that modulates the activity of the plasminogen activator (PA) and was implicated in tissue remodeling. In this study, we investigated the expression patterns of SERPINE2 in the mouse placenta and uterus during the estrous cycle, pregnancy, and lactation.</p> <p>Methods</p> <p>SERPINE2 was purified from mouse seminal vesicle secretion using liquid chromatography (LC) and identified by LC/tandem mass spectrometry. The antiserum against the SERPINE2 protein was raised in rabbits. To reveal the uterine and placental expression of SERPINE2, tissues at various stages were collected for real-time PCR quantification, Western blotting, and immunohistochemical staining.</p> <p>Results</p> <p>Serpine2 mRNA was the major PA inhibitor in the placenta and uterus during the estrous cycle, pregnancy, and lactation, although Serpine1 mRNA had higher expression levels than Serpine2 mRNA in the placenta. Plat seemed to be the major PA in the mouse uterus and placenta. Antiserum against the SERPINE2 protein specifically recognized two forms of SERPINE2 and an extra 75-kDa protein, which was probably a complex of SERPINE2 with a certain protease, from among thousands of protein components in the tissue extract as demonstrated by Western blotting. In the uterus, SERPINE2 was primarily localized in luminal and glandular epithelial cells but it also was detected in circular and longitudinal smooth muscle cells during the estrous cycle and lactation. It was prominently expressed in decidual stroma cells, the metrial gland, and endometrial epithelium of the pregnant uterus. In the placenta, SERPINE2 was expressed in trophoblasts of the labyrinth and spongiotrophoblasts. However, its expression was remarkably reduced in giant cells which existed in the giant cell-decidual junction zone. In contrast, prominent expression of SERPINE2 seemed to be detected on clusters of glycogen cells near the junction zone. In addition, yolk sac membranes also showed high expression of SERPINE2.</p> <p>Conclusions</p> <p>These findings indicate that SERPINE2 is a major PA inhibitor in the placenta and uterus during the estrous cycle, pregnancy, and lactation. It may participate in the PA-modulated tissue remodeling process in the mouse placenta and uterus.</p

    Early-cleavage is a reliable predictor for embryo implantation in the GnRH agonist protocols but not in the GnRH antagonist protocols

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To test if early-cleavage was a strong predictor of pregnancy in patients receiving either a GnRH agonist long protocol or a GnRH antagonist protocol for in-vitro fertilization treatment (IVF) and intracytoplasmic sperm injection (ICSI).</p> <p>Methods</p> <p>This retrospective study included 534 patients undergoing a fresh cycle of oocyte retrieval and the day-3 embryo transfer (from 22 to 46 years old). Of the 534 patients treated, 331 received a GnRH agonist long stimulation protocol (GnRH agonist group) for ovarian stimulation and 203 patients received a GnRH antagonist protocol (GnRH antagonist group). In each group, patients who had at least one early-cleavage embryo transferred were designated as the 'early-cleavage' subgroup. Patients who had no early-cleavage embryos transferred were designated as the 'late-cleavage' subgroup.</p> <p>Results</p> <p>The early cleavage rate was significantly lower in the GnRH antagonist group compared with that in the GnRH agonist group (IVF cycles: 34% versus 20%; ICSI cycles: 50% versus 37.8%, respectively, P < 0.0001). In the GnRH agonist group, the pregnancy rates were significantly higher in the early-cleavage subgroup than those in the late-cleavage subgroup (53.7% vs 33.9%, <it>P </it>< 0.0001). In the GnRH antagonist group, the pregnancy rates were not significantly different between the early-cleavage and late-cleavage subgroups (45.9% vs 43.8%, P > 0.05).</p> <p>Conclusion</p> <p>Early cleavage of zygote is not a reliable predictor for embryo implantation potential in using the GnRH antagonist protocol. Furthermore, the implantation rates between the GnRH agonist and GnRH antagonist groups were comparable.</p

    Dome-Shaped Ellipsoidal Reflector Antenna for UHF-RFID Readers with Confined Near-Field Detection Region

    Get PDF
    This letter proposes and demonstrates the concept of ellipsoidal reflector antennas for radio frequency identification reader applications at UHF band. The antenna can be potentially integrated with environmental structures to confine the reader detection region. The energy bounding characteristics result from the dual-focus feature of an ellipsoidal reflector in its near-field region, as the feed located at one of the two foci can create a focused field distribution around the other focus. An axial energy focusing is, thus, formed to confine the energy in a restricted region (near-field beam focusing), also minimizing the interference effects outside of the targeted area. Both numerical simulations and experimental results are presented to demonstrate the feasibility of this antenna concept

    The association between tyrosine kinase inhibitors and fatal arrhythmia in patients with non-small cell lung cancer in Taiwan

    Get PDF
    ObjectiveAs a standard therapy, tyrosine kinase inhibitors (TKIs) improved survival in patients with non-small cell lung cancer (NSCLC) and epidermal growth factor receptor (EGFR) mutation. However, treatment-related cardiotoxicity, particularly arrhythmia, cannot be ignored. With the prevalence of EGFR mutations in Asian populations, the risk of arrhythmia among patients with NSCLC remains unclear.MethodsUsing data from the Taiwanese National Health Insurance Research Database and National Cancer Registry, we identified patients with NSCLC from 2001 to 2014. Using Cox proportional hazards models, we analyzed outcomes of death and arrhythmia, including ventricular arrhythmia (VA), sudden cardiac death (SCD), and atrial fibrillation (AF). The follow-up duration was three years.ResultsIn total, 3876 patients with NSCLC treated with TKIs were matched to 3876 patients treated with platinum analogues. After adjusting for age, sex, comorbidities, and anticancer and cardiovascular therapies, patients receiving TKIs had a significantly lower risk of death (adjusted HR: 0.767; CI: 0.729–0.807, p &lt; 0.001) than those receiving platinum analogues. Given that approximately 80% of the studied population reached the endpoint of mortality, we also adjusted for mortality as a competing risk. Notably, we observed significantly increased risks of both VA (adjusted sHR: 2.328; CI: 1.592–3.404, p &lt; 0.001) and SCD (adjusted sHR: 1.316; CI: 1.041–1.663, p = 0.022) among TKI users compared with platinum analogue users. Conversely, the risk of AF was similar between the two groups. In the subgroup analysis, the increasing risk of VA/SCD persisted regardless of sex and most cardiovascular comorbidities.ConclusionsCollectively, we highlighted a higher risk of VA/SCD in TKI users than in patients receiving platinum analogues. Further research is needed to validate these findings
    • 

    corecore