9,341 research outputs found

    Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity

    Get PDF
    A practical scheme is proposed for creation of continuous variable entangled cluster states of four distinct atomic ensembles located inside a high-finesse ring cavity. The scheme does not require a set of external input squeezed fields, a network of beam splitters and measurements. It is based on nothing else than the dispersive interaction between the atomic ensembles and the cavity mode and a sequential application of laser pulses of a suitably adjusted amplitudes and phases. We show that the sequential laser pulses drive the atomic "field modes" into pure squeezed vacuum states. The state is then examined against the requirement to belong to the class of cluster states. We illustrate the method on three examples of the entangled cluster states, the so-called continuous variable linear, square and T-type cluster states.Comment: 9 pages, 3 figure

    Collective Film Camera in Shanghai: A Business Plan

    Full text link
    For this project, the primary goal is to research the viability of a vintage camera business in Shanghai, China. By research and analyze the market segmentation and industry environment, this plan is used as a tool to find a marketing strategy to differentiate the business with the others

    Optimizing Coordinated Vehicle Platooning: An Analytical Approach Based on Stochastic Dynamic Programming

    Full text link
    Platooning connected and autonomous vehicles (CAVs) can improve traffic and fuel efficiency. However, scalable platooning operations require junction-level coordination, which has not been well studied. In this paper, we study the coordination of vehicle platooning at highway junctions. We consider a setting where CAVs randomly arrive at a highway junction according to a general renewal process. When a CAV approaches the junction, a system operator determines whether the CAV will merge into the platoon ahead according to the positions and speeds of the CAV and the platoon. We formulate a Markov decision process to minimize the discounted cumulative travel cost, i.e. fuel consumption plus travel delay, over an infinite time horizon. We show that the optimal policy is threshold-based: the CAV will merge with the platoon if and only if the difference between the CAV's and the platoon's predicted times of arrival at the junction is less than a constant threshold. We also propose two ready-to-implement algorithms to derive the optimal policy. Comparison with the classical value iteration algorithm implies that our approach explicitly incorporating the characteristics of the optimal policy is significantly more efficient in terms of computation. Importantly, we show that the optimal policy under Poisson arrivals can be obtained by solving a system of integral equations. We also validate our results in simulation with Real-time Strategy (RTS) using real traffic data. The simulation results indicate that the proposed method yields better performance compared with the conventional method

    System architecture and hardware implementations for a reconfigurable MPLS router

    Get PDF
    With extremely wide bandwidth and good channel properties, optical fibers have brought fast and reliable data transmission to today’s data communications. However, to handle heavy traffic flowing through optical physical links, much faster processing speed is required or else congestion can take place at network nodes. Also, to provide people with voice, data and all categories of multimedia services, distinguishing between different data flows is a requirement. To address these router performance, Quality of Service /Class of Service and traffic engineering issues, Multi-Protocol Label Switching (MPLS) was proposed for IP-based Internetworks. In addition, routers flexible in hardware architecture in order to support ever-evolving protocols and services without causing big infrastructure modification or replacement are also desirable. Therefore, reconfigurable hardware implementation of MPLS was proposed in this project to obtain the overall fast processing speed at network nodes. The long-term goal of this project is to develop a reconfigurable MPLS router, which uniquely integrates the best features of operations being conducted in software and in run-time-reconfigurable hardware. The scope of this thesis includes system architecture and service algorithm considerations, Verilog coding and testing for an actual device. The hardware and software co-design technique was used to partition and schedule the protocol code for execution on both a general-purpose processor and stream-based hardware. A novel RPS scheme that is practically easy to build and can realize pipelined packet-by-packet data transfer at each output was proposed to take the place of the traditional crossbar switching. In RPS, packets with variable lengths can be switched intelligently without performing packet segmentation and reassembly. Primary theoretical analysis of queuing issues was discussed and an improved multiple queue service scheduling policy UD-WRR was proposed, which can reduce packet-waiting time without sacrificing the performance. In order to have the tests carried out appropriately, dedicated circuitry for the MPLS functional block to interface a specific MAC chip was implemented as well. The hardware designs for all functions were realized with a single Field Programmable Gate Array (FPGA) device in this project. The main result presented in this thesis was the MPLS function implementation realizing a major part of layer three routing at the reconfigurable hardware level, which advanced a great step towards the goal of building a router that is both fast and flexible

    Optimizing Techniques and Cramer-Rao Bound for Passive Source Location Estimation

    Get PDF
    This work is motivated by the problem of locating potential unstable areas in underground potash mines with better accuracy more consistently while introducing minimum extra computational load. It is important for both efficient mine design and safe mining activities, since these unstable areas may experience local, low-intensity earthquakes in the vicinity of an underground mine. The object of this thesis is to present localization algorithms that can deliver the most consistent and accurate estimation results for the application of interest. As the first step towards the goal, three most representative source localization algorithms given in the literature are studied and compared. A one-step energy based grid search (EGS) algorithm is selected to address the needs of the application of interest. The next step is the development of closed-form Cram´er-Rao bound (CRB) expressions. The mathematical derivation presented in this work deals with continuous signals using the Karhunen-Lo`eve (K-L) expansion, which makes the derivation applicable to non-stationary Gaussian noise problems. Explicit closed-form CRB expressions are presented only for stationary Gaussian noise cases using the spectrum representation of the signal and noise though. Using the CRB comparisons, two approaches are proposed to further improve the EGS algorithm. The first approach utilizes the corresponding analytic expression of the error estimation variance (EEV) given in [1] to derive an amplitude weight expression, optimal in terms of minimizing this EEV, for the case of additive Gaussian noise with a common spectrum interpretation across all the sensors. An alternate noniterative amplitude weighting scheme is proposed based on the optimal amplitude weight expression. It achieves the same performance with less calculation compared with the traditional iterative approach. The second approach tries to optimize the EGS algorithm in the frequency domain. An analytic frequency weighted EEV expression is derived using spectrum representation and the stochastic process theory. Based on this EEV expression, an integral equation is established and solved using the calculus of variations technique. The solution corresponds to a filter transfer function that is optimal in the sense that it minimizes this analytic frequency domain EEV. When various parts of the frequency domain EEV expression are ignored during the minimization procedure using Cauchy-Schwarz inequality, several different filter transfer functions result. All of them turn out to be well known classical filters that have been developed in the literature and used to deal with source localization problems. This demonstrates that in terms of minimizing the analytic EEV, they are all suboptimal, not optimal. Monte Carlo simulation is performed and shows that both amplitude and frequency weighting bring obvious improvement over the unweighted EGS estimator

    Greenhouse gas emissions from and storm impacts on wastewater treatment plants : process modelling and control

    Get PDF
    Cette thèse étudie l'interaction entre les stations d’épuration (STEP) et le changement climatique: soit en premier lieu la production ainsi que les émissions de gaz à effet de serre (GES), en particulier le protoxyde d’azote (N2O), généré à la STEP et en second lieu l’effet des pluies plus intenses dues aux changements climatiques sur la STEP. Des campagnes de mesure sur le terrain et la modélisation à échelle réelle ont été utilisées conjointement dans cette recherche. Une campagne de mesure d'une durée d’un mois a été réalisée dans une STEP traitant les eaux usées de 750,000 équivalents habitants, soit la STEP d’Eindhoven aux Pays-Bas. Des capteurs en ligne ont été installés dans la zone d'aération du bioréacteur. Une usine virtuelle de grande échelle, soit la STEP décrit par le Benchmark Simulation Model No.2 (BSM2), ainsi qu’une usine réelle de grande échelle, soit la STEP d’Eindhoven aux Pays-Bas, étaient incluses dans cette étude. Dans les deux cas, les modèles ont été modifiés afin de prendre en compte les GES, en particulier la production de N2O. Deux modèles de boues activées (ASM) ont été développés, soit l’ASMG1 et l’ASMG2d. En plus de la conversion de N2O par les bactéries hétérotrophes, les deux modèles sont en mesure de simuler la production de N2O par la dénitrification catalysée par les bactéries oxydant l'ammoniac (AOB). Les modèles décrivent aussi l'effet de l’oxygène dissous (OD) sur la cinétique de production de N2O par les AOB grâce à une modification de la cinétique d’Haldane. Les résultats montrent que les AOB produisent beaucoup de N2O tandis que les hétérotrophes en consomment considérablement. Les émissions de N2O augmentent lorsque les concentrations de NH4+ sont élevées et que les concentrations d’OD sont modérées (jusqu’à 2.5 mg O2/l dans cette étude). Ces conditions peuvent avoir été créées par le contrôle en cascade de NH4+-OD qui vise à réduire la consommation d'énergie en diminuant les concentrations d'OD lorsque la concentration de NH4+ est suffisamment faible. En outre, ce contrôleur en cascade est une stratégie de rétroaction à gain faible. C'est-à-dire, un retard significatif se produit entre la détection d'une augmentation de NH4+ et l'accroissement de l'aération. Toutes ces propriétés produisent des conditions favorables à la production de N2O par les bactéries AOB. Différents scénarios alternatifs ainsi que des stratégies de contrôle ont été comparés selon la qualité de l'effluent, le coût d’opération et les émissions de GES. Dans le cadre de BSM2, un bon équilibre entre la qualité de l'effluent, le coût d’opération et les émissions de GES a été obtenu avec à la mise en œuvre d'un contrôleur rétroactif pur de l’OD sur la première zone d'aération et d’un contrôleur en cascade de NH4+-DO sur les deux zones d'aération suivantes et en utilisant soit une stratégie d'alimentation étagée ou le contrôle du recyclage des boues afin de gérer les pics de débits. Mots-clés: Traitement des eaux usées par boues activées, contrôle de procédé, campagne de mesures en terrain, modélisation mathématique à échelle grandeur réelle, gaz à effet de serre, protoxyde d’azote, temps de pluie.This PhD thesis studied the interaction between wastewater treatment plants (WWTPs) and climate change, i.e. the production and emission of greenhouse gases (GHGs), especially nitrous oxide (N2O), from WWTPs and the effect of the climate change induced more intense rain events on WWTPs. Both field measurements and full-scale modelling were pursued in this research. A one-month measurement campaign was performed by installing on-line sensors at the aeration zone of the bioreactor of a 750,000 person equivalents WWTP, i.e. the Eindhoven WWTP in the Netherlands. The models of a full-scale virtual plant, i.e. the Benchmark Simulation Model No.2 (BSM2), and a full-scale real plant, i.e. the Eindhoven WWTP in the Netherlands, were extended with respect to GHG emissions, especially the pathways involving N2O. Two types of extended Activated Sludge Models (ASM) were developed, i.e. ASMG1 for COD/N removal and ASMG2d for COD/N/P removal. Besides heterotrophic N2O production, both proposed models include N2O production by nitrite denitrification by ammonia-oxidizing bacteria (AOB) and describe the DO effect on AOB N2O production by a modified Haldane kinetics term. Results showed that AOB are the major producer of N2O while the heterotrophs consume N2O considerably. The high N2O emissions occurred under high NH4+ and intermediate DO concentrations (up to 2.5 mg O2/l in this work). Such conditions can be created by NH4+-DO cascade control which aims at reducing energy consumption by lowering the DO concentrations when the NH4+ concentration is sufficiently low. Moreover, this cascade controller is a low-gain feedback control strategy, i.e. a significant delay will occur between the detection of a NH4+ increase and the increase in aeration. All these properties lead to conditions favourable to N2O production by AOB. Different alternative scenarios and control strategies were compared in terms of effluent quality, operational cost and GHG emissions. In the framework of BSM2, a good balance among effluent quality, operational cost and GHG emissions was realized by implementing a pure DO feedback controller in the first aeration zone and a NH4+-DO cascade controller in the following two aeration zones and using either step feed or sludge recycling control to deal with hydraulic shocks. Keywords: Activated sludge, wastewater treatment, process control, field measurements, full-scale mathematical modelling, greenhouse gases, nitrous oxide, wet weather conditions
    • …
    corecore