14,826 research outputs found
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Most numerical investigations on the role of magnetic fields in turbulent
molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However,
MCs are weakly ionized, so that the time scale required for the magnetic field
to diffuse through the neutral component of the plasma by ambipolar diffusion
(AD) can be comparable to the dynamical time scale. We have performed a series
of 256^3 and 512^3 simulations on supersonic but sub-Alfvenic turbulent systems
with AD using the Heavy-Ion Approximation developed in Li, McKee, & Klein
(2006). Our calculations are based on the assumption that the number of ions is
conserved, but we show that these results approximately apply to the case of
time-dependent ionization in molecular clouds as well. Convergence studies
allow us to determine the optimal value of the ionization mass fraction when
using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent
systems. We find that ambipolar diffusion steepens the velocity and magnetic
power spectra compared to the ideal MHD case. Changes in the density PDF, total
magnetic energy, and ionization fraction are determined as a function of the AD
Reynolds number. The power spectra for the neutral gas properties of a strongly
magnetized medium with a low AD Reynolds number are similar to those for a
weakly magnetized medium; in particular, the power spectrum of the neutral
velocity is close to that for Burgers turbulence.Comment: 37 pages, 11 figures, 4 table
A Structured Framework and Resources to Use to Get Your Medical Education Work Published.
IntroductionMedical educators often have great ideas for medical education scholarship but have difficulty converting their educational abstract or project into a published manuscript.MethodsDuring this workshop, participants addressed common challenges in developing an educational manuscript. In small-group case scenarios, participants discovered the importance of the "So what?" in making the case for their project. Incorporating conceptual frameworks, participants chose appropriate outcome metrics, discussed how to frame the discussion section, and ensured appropriate journal fit. After each small-group exercise, large-group discussions allowed the small groups to report back so that facilitators could highlight and reinforce key learning points. At the conclusion of the workshop, participants left with a checklist for creating an educational manuscript and an additional resources document to assist them in avoiding common pitfalls when turning their educational abstract/project into a publishable manuscript.ResultsThis workshop was presented in 2016 and 2017. Presenter evaluations were completed by 33 participants; 11 completed conference evaluations. The mean overall rating on presenter evaluations was 4.55 out of 5, while the conference evaluations mean was 3.73 out of 4. Comments provided on both evaluation tools highlighted the perceived effectiveness of the delivery and content. More than 50% of respondents stated that they planned to incorporate the use of conceptual frameworks in future work.DiscussionThis workshop helped participants address common challenges by providing opportunities for hands-on practice as well as tips and resources for use when submitting a medical education manuscript for publication
High-fidelity Multidisciplinary Sensitivity Analysis and Design Optimization for Rotorcraft Applications
A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. A sensitivity-enabled fluid dynamics solver and a nonlinear flexible multibody dynamics solver are coupled to predict aerodynamic loads and structural responses of helicopter rotor blades. A discretely consistent adjoint-based sensitivity analysis available in the fluid dynamics solver provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Accuracy of the coupled system is validated by conducting simulations for a benchmark rotorcraft model and comparing solutions with established analyses and experimental data. Sensitivities of lift computed by the multidisciplinary sensitivity analysis are verified by comparison with the sensitivities obtained by complex-variable simulations. Finally the multidisciplinary sensitivity analysis is applied to a constrained gradient-based design optimization for a HART-II rotorcraft configuration
Thermal performance of two heat exchangers for thermoelectric generators
Thermal performance of heat exchanger is important for potential application in integrated solar cell/module and
thermoelectric generator (TEG) system. Usually, thermal performance of a heat exchanger for TEGs is analysed
by using a 1D heat conduction theory which ignores the detailed phenomena associated with thermo-hydraulics.
In this paper, thermal and mass transports in two different exchangers are simulated by means of a steady-state,
3D turbulent flow k -e model with a heat conduction module under various flow rates. In order to simulate an
actual working situation of the heat exchangers, hot block with an electric heater is included in the model. TEG
model is simplified by using a 1D heat conduction theory, so its thermal performance is equivalent to a real TEG.
Natural convection effect on the outside surfaces of the computational model is considered. Computational
models and methods used are validated under transient thermal and electrical experimental conditions of a TEG.
It is turned out that the two heat exchangers designed have a better thermal performance compared with an
existing heat exchanger for TEGs, and more importantly, the fin heat exchanger is more compact and has nearly
half temperature rise compared with the tube heat exchanger
Ginzburg-Landau Theory of Josephson Field Effect Transistors
A theoretical model of high-T_c Josephson Field Effect Transistors (JoFETs)
based on a Ginzburg-Landau free energy expression whose parameters are field-
and spatially- dependent is developed. This model is used to explain
experimental data on JoFETs made by the hole-overdoped Ca-SBCO bicrystal
junctions (three terminal devices). The measurements showed a large modulation
of the critical current as a function of the applied voltage due to charge
modulation in the bicrystal junction. The experimental data agree with the
solutions of the theoretical model. This provides an explanation of the large
field effect, based on the strong suppresion of the carrier density near the
grain boundary junction in the absence of applied field and the subsequent
modulation of the density by the field.Comment: REVTEX, 4 figures upon request, submitted to Appl. Phys. Let
Quantization for an elliptic equation of order 2m with critical exponential non-linearity
On a smoothly bounded domain we consider a sequence of
positive solutions in to
the equation subject to Dirichlet
boundary conditions, where . Assuming that
we
prove that is an integer multiple of
\Lambda_1:=(2m-1)!\vol(S^{2m}), the total -curvature of the standard
-dimensional sphere.Comment: 33 page
Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields
In semiconductor physics, many essential optoelectronic material parameters
can be experimentally revealed via optical spectroscopy in sufficiently large
magnetic fields. For monolayer transition-metal dichalcogenide semiconductors,
this field scale is substantial --tens of teslas or more-- due to heavy carrier
masses and huge exciton binding energies. Here we report absorption
spectroscopy of monolayer MoS, MoSe, MoTe, and WS in very high
magnetic fields to 91~T. We follow the diamagnetic shifts and valley Zeeman
splittings of not only the exciton's ground state but also its excited
, , ..., Rydberg states. This provides a direct experimental
measure of the effective (reduced) exciton masses and dielectric properties.
Exciton binding energies, exciton radii, and free-particle bandgaps are also
determined. The measured exciton masses are heavier than theoretically
predicted, especially for Mo-based monolayers. These results provide essential
and quantitative parameters for the rational design of opto-electronic van der
Waals heterostructures incorporating 2D semiconductors.Comment: updated; now also including data on MoTe2. Accepted & in press,
Nature Commu
Optical Magnetometer Array for Fetal Magnetocardiography
We describe an array of spin-exchange relaxation free optical magnetometers
designed for detection of fetal magnetocardiography (fMCG) signals. The
individual magnetometers are configured with a small volume with intense
optical pumping, surrounded by a large pump-free region. Spin-polarized atoms
that diffuse out of the optical pumping region precess in the ambient magnetic
field and are detected by a probe laser. Four such magnetometers, at the
corners of a 7 cm square, are configured for gradiometry by feeding back the
output of one magnetometer to a field coil to null uniform magnetic field noise
at frequencies up to 200 Hz. Using this array, we present the first
measurements of fMCG signals using an atomic magnetometer
Light trapping in ultrathin plasmonic solar cells
We report on the design, fabrication, and measurement of ultrathin film a-Si:H solar cells with nanostructured plasmonic back contacts, which demonstrate enhanced short circuit current densities compared to cells having flat or randomly textured back contacts. The primary photocurrent enhancement occurs in the spectral range from 550 nm to 800 nm. We use angle-resolved photocurrent spectroscopy to confirm that the enhanced absorption is due to coupling to guided modes supported by the cell. Full-field electromagnetic simulation of the absorption in the active a-Si:H layer agrees well with the experimental results. Furthermore, the nanopatterns were fabricated via an inexpensive, scalable, and precise nanopatterning method. These results should guide design of optimized, non-random nanostructured back reflectors for thin film solar cells
- …