197 research outputs found

    Effects of Carrier Materials on Anaerobic Hydrogen Production by Continuous Mixed Immobilized Sludge Reactors

    Get PDF
    To enhance hydrogen production rate and increase substrate utilization efficiency of anaerobic fermentation, three carrier materials, Granular Activated Carbon (GAC), Zeolite Molecular Sieve (ZMS) and Biological Ceramic Ring (BCR), were used as carrier materials in Continuous Mixed Immobilized Sludge Reactors (CMISRs). The effects of carrier materials and substrate organic loading rate (OLR, OLR = 12, 24, 36, 48 kg/m3/d) on biohydrogen production were investigate, respectively. The highest HPRs of ZMS, GAC and BCR were achieved under the OLR of 36 kg COD/m3/d, and were 2.01, 1.81, and 2.86 L/L/d, respectively. The highest COD removal efficiencies of ZMS, GAC and BCR were 38.95 % (OLR = 24 kg COD/m3/d), 36.47 % (OLR = 36 kg COD/m3/d), and 41.03 % (OLR = 36 kg COD/m3/d), respectively. The best substrate degradation rate of ZMS, GAC and BCR were 40.33 % (OLR = 24 kg COD/m3/d), 38.30 % (OLR = 24 kg COD/m3/d) and 45.60 % (OLR = 12 kg COD/m3/d). The results indicated that biological ceramic ring get better hydrogen production and wastewater treatment performance as sludge carrier material for hydrogen production in immobilized bioprocesses

    Assessment on the performance of the enhanced displacement ventilation system in the tropics

    Get PDF
    Master'sMASTER OF SCIENCE (BUILDING

    Effect of Autoclave Pretreatment on Biogas Production through Anaerobic Digestion of Green Algae

    Get PDF
    Anaerobic Digestion (AD) is one of the most widely used methods in the field of sustainable bioenergy production from various feedstock. One such feedstock is algae waste which has become an increasingly serious environmental problem. AD of algal biomass is hindered by the presence of resistant cell walls; hence a pretreatment step is usually required to decompose the cell wall structure. This study uses green algae (Enteromorpha) and anaerobic sludge as raw materials to explore the impact of autoclave (AC) pretreatment on biogas production. AC pretreatment was performed at 120 °C and 80 °C. The cumulative biogas production of the 120 °C AC pretreatment, 80 °C AC pretreatment and control group were 600 mL, 450 mL and 400 mL, respectively. The results showed that AC pretreatment improved the biodegradability of biomass as 120 °C AC pretreatment group achieved higher degradation rate of cells (95.99 %). The energy evaluation showed that the net energy ratio of the 120 °C AC pretreatment group was 1.07, indicating high overall energy gain via AD process. The experimental data is further modeled by using Modified Gompertz Model (MGM) and Logistic Function Model (LFM). To check the applicability of better model for this AD process, an Akaike Information Criteria (AIC) test was performed. AIC showed that the MGM is basically consistent with the experimental data and more reliable for prediction modeling of Enteromorpha AD

    A Quantum Federated Learning Framework for Classical Clients

    Full text link
    Quantum Federated Learning (QFL) enables collaborative training of a Quantum Machine Learning (QML) model among multiple clients possessing quantum computing capabilities, without the need to share their respective local data. However, the limited availability of quantum computing resources poses a challenge for each client to acquire quantum computing capabilities. This raises a natural question: Can quantum computing capabilities be deployed on the server instead? In this paper, we propose a QFL framework specifically designed for classical clients, referred to as CC-QFL, in response to this question. In each iteration, the collaborative training of the QML model is assisted by the shadow tomography technique, eliminating the need for quantum computing capabilities of clients. Specifically, the server constructs a classical representation of the QML model and transmits it to the clients. The clients encode their local data onto observables and use this classical representation to calculate local gradients. These local gradients are then utilized to update the parameters of the QML model. We evaluate the effectiveness of our framework through extensive numerical simulations using handwritten digit images from the MNIST dataset. Our framework provides valuable insights into QFL, particularly in scenarios where quantum computing resources are scarce

    New record in the number of qubits for a quantum implementation of AES

    Get PDF
    Optimizing the quantum circuit for implementing Advanced Encryption Standard (AES) is crucial for estimating the necessary resources in attacking AES by Grover algorithm. Previous studies have reduced the number of qubits required for the quantum circuits of AES-128/-192/-256 from 984/1112/1336 to 270/334/398, which is close to the optimal value of 256/320/384. It becomes a challenging task to further optimize them. Aiming at this task, we find a method about how the quantum circuit of AES S-box can be designed with the help of automation tool LIGHTER-R. Particularly, the multiplicative inversion in F_2^8, which is the main part of S-box, is converted into the multiplicative inversion (and multiplication) in F_2^4, then the latter can be implemented by LIGHTER-R because its search space is small enough. By this method, we construct the quantum circuits of S-box for mapping |a>|0> to |a>|S(a)> and |a>|b> to |a>|b+S(a)> with 20 qubits instead of 22 in the previous studies. Besides, we introduce new techniques to reduce the number of qubits required by the S-box circuit for mapping |a> to |S(a)>from 22 in the previous studies to 16. Accordingly, we synthesize the quantum circuits of AES-128/-192/-256 with 264/328/392 qubits, which implies a new record

    Inhibitory effect of small interfering RNA on dengue virus replication in mosquito cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue viruses (DENs) are the wildest transmitted mosquito-borne pathogens throughout tropical and sub-tropical regions worldwide. Infection with DENs can cause severe flu-like illness and potentially fatal hemorrhagic fever. Although RNA interference triggered by long-length dsRNA was considered a potent antiviral pathway in the mosquito, only limited studies of the value of small interfering RNA (siRNA) have been conducted.</p> <p>Results</p> <p>A 21 nt siRNA targeting the membrane glycoprotein precursor gene of DEN-1 was synthesized and transfected into mosquito C6/36 cells followed by challenge with DEN. The stability of the siRNA in cells was monitored by flow cytometry. The antiviral effect of siRNA was evaluated by measurement of cell survival rate using the MTT method and viral RNA was quantitated with real-time RT-PCR. The presence of cells containing siRNA at 0.25, 1, 3, 5, 7 days after transfection were 66.0%, 52.1%, 32.0%, 13.5% and 8.9%, respectively. After 7 days incubation with DEN, there was reduced cytopathic effect, increased cell survival rate (76.9 ± 4.5% <it>vs </it>23.6 ± 14.6%) and reduced viral RNA copies (Ct value 19.91 ± 0.63 <it>vs </it>14.56 ± 0.39) detected in transfected C6/36 cells.</p> <p>Conclusions</p> <p>Our data showed that synthetic siRNA against the DEN-1 membrane glycoprotein precursor gene effectively inhibited DEN-1 viral RNA replication and increased C6/36 cell survival rate. siRNA may offer a potential new strategy for prevention and treatment of DEN infection.</p
    corecore