31 research outputs found

    Low-Range-Sidelobe Waveform Design for MIMO-OFDM ISAC Systems

    Full text link
    Integrated sensing and communication (ISAC) is a promising technology in future wireless systems owing to its efficient hardware and spectrum utilization. In this paper, we consider a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC system and propose a novel waveform design to provide better radar ranging performance by taking range sidelobe suppression into consideration. In specific, we aim to design MIMO-OFDM dual-function waveform to minimize its integrated sidelobe level (ISL) while satisfying the quality of service (QoS) requirements of multi-user communications and the transmit power constraint. To achieve a lower ISL, the symbol-level precoding (SLP) technique is employed to fully exploit the degrees of freedom (DoFs) of the waveform design in both temporal and spatial domains. An efficient algorithm utilizing majorization-minimization (MM) framework is developed to solve the non-convex waveform design problem. Simulation results reveal radar ranging performance improvement and demonstrate the benefits of the proposed SLP-based low-range-sidelobe waveform design in ISAC systems

    Evaluation of gaseous concentrations, bacterial diversity and microbial quantity in different layers of deep litter system

    Get PDF
    Objective An experiment was conducted to investigate the environment of the deep litter system and provided theoretical basis for production. Methods The bedding samples were obtained from a pig breeding farm and series measurements associated with gases concentrations and the bacterial diversity as well as the quantity of Escherichia coli, Lactobacilli, Methanogens were performed in this paper. Results The concentrations of CO2, CH4, and NH3 in the deep litter system increased with the increasing of depth while the N2O concentrations increased fiercely from the 0 cm to the −10 cm depth but then decreased beneath the −10 cm depth. Meanwhile, the Shannon index, the dominance index as well as the evenness index at the −20 cm layer was significantly different from the other layers (p<0.05). On the other hand, the quantity of Escherichia coli reached the highest value at the surface beddings and there was a significant drop at the −20 cm layer with the increasing depth. The Lactobacilli numbers increased with the depth from 0 cm to −15 cm and then decreased significantly under the −20 cm depth. The expression of Methanogens reached its largest value at the depth of −35 cm. Conclusion The upper layers (0 cm to −5 cm) of this system were aerobic, the middle layers (−10 cm to −20 cm) were micro-aerobic, while that the bottom layers (below −20 cm depth) were anaerobic. In addition, from a standpoint of increasing the nitrification pathway and inhibiting the denitrification pathway, it should be advised that the deep litter system should be kept aerobic

    Exploring the Protective Effects and Mechanism of Crocetin From Saffron Against NAFLD by Network Pharmacology and Experimental Validation

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem but no drug has been approved for its treatment. Animal experiments and clinical trials have demonstrated the beneficial of saffron on NAFLD. However, the bioactive ingredients and therapeutic targets of saffron on NAFLD are unclear.Purpose: This study aimed to identify the bioactive ingredients of saffron responsible for its effects on NAFLD and explore its therapy targets through network pharmacology combined with experimental tests.Methods: Various network databases were searched to identify bioactive ingredients of saffron and identify NAFLD-related targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to enrich functions and molecular pathways of common targets and the STRING database was used to establish a protein-protein interaction network (PPI). The effect of crocetin (CCT) on NAFLD was evaluated in a mouse model of NAFLD by measuring the biomarkers of lipid, liver and renal function, oxidative stress, and inflammation. Liver histopathology was performed to evaluate liver injury. Nuclear factor erythroid-related factor (Nrf2) and hemeoxygenase-1 (HO-1) were examined to elucidate underlying mechanism for the protective effect of saffron against NAFLD.Results: A total of nine bioactive ingredients of saffron, including CCT, with 206 common targets showed therapeutic effects on NAFLD. Oxidative stress and diabetes related signaling pathways were identified as the critical signaling pathways mediating the therapeutic effects of the active bioactive ingredients on NAFLD. Treatment with CCT significantly reduced the activities of aspartate aminotransferase (AST), alanine transaminase (ALT), and the levels of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), blood urea nitrogen (BUN), creatinine (CR), and uric acid (UA). CCT significantly increased the activities of superoxide dismutase (SOD), and catalase (CAT). Histological analysis showed that CCT suppressed high-fat diet (HFD) induced fat accumulation, steatohepatitis, and renal dysfunctions. Results of ELISA assay showed that CCT decreased the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and increased the expression of HO-1 and Nrf2.Conclusion: This study shows that CCT is a potential bioactive ingredient of saffron that treats NAFLD. Its mechanism of action involves suppressing of oxidative stress, mitigating inflammation, and upregulating Nrf2 and HO-1 expression

    Characterization and Sorptivity of the Plesiomonas shigelloides Strain and Its Potential Use to Remove Cd2+ from Wastewater

    No full text
    In this study, the ability of adsorbing Cd2+ ions of Plesiomonas shigelloides was discovered. Herein, the method and mechanisms of adsorbing Cd2+ ions from aqueous solutions is discussed. The cadmium-resistant bacterium was collected from the sediment of Harbin section of the Songhua River in China, and then isolated, identified and characterized. The isolated strain was identified as Plesiomonas shigelloides H5 on the basis of morphological and biochemical characteristics, the sequencing of the 16SrDNA gene, and phylogeny analysis. P. shigelloides H5 was Gram-negative and bacillus. Maximum tolerance concentration (MTC) of the strain was 150 mg/L. The maximum adsorption rate and adsorption amounts was 42.71% ± 0.88% and 106.775 ± 2.325 mg/g when dried biomass was presented in a 50 mg/L Cd2+ solution. Dried biomass was in accordance with Lagergren pseudo-second-order models. A field emission scanning electron microscope (FE-SEM), an energy dispersive X-ray spectrometer (EDX), and Fourier transform infrared spectroscopy (FTIR) analyses were applied to identify the surface morphology and functional groups. Transmission electron microscope (TEM) results showed that Cd2+ was also absorbed into cells to form precipitates. The results revealed that the surface functional groups of P. shigelloides H5 can bind to heavy metal ions. To sum up, the ability of adsorbing cadmium ions of Plesiomonas shigelloides was discovered, which might be helpful in wastewater treatment in the future

    Presentations : best practices vs. what's practiced - a field research.

    No full text
    This paper explores how Powerpoint Presentations are given in business settings in Singapore, and aims to identify the gaps, if any, between actual business practices and best practices. The significance of this gap is also examined

    Quantifying Urban Spatial Variations of Anthropogenic VOC Concentrations and Source Contributions with a Mobile Sampling Platform

    No full text
    Volatile organic compounds (VOCs) are important atmospheric constituents because they contribute to formation of ozone and secondary aerosols, and because some VOCs are toxic air pollutants. We measured concentrations of a suite of anthropogenic VOCs during summer and winter at 70 locations representing different microenvironments around Pittsburgh, PA. The sampling sites were classified both by land use (e.g., high versus low traffic) and grouped based on geographic similarity and proximity. There was roughly a factor of two variation in both total VOC and single-ring aromatic VOC concentrations across the site groups. Concentrations were roughly 25% higher in winter than summer. Source apportionment with positive matrix factorization reveals that the major VOC sources are gasoline vehicles, solvent evaporation, diesel vehicles, and two factors attributed to industrial emissions. While we expected to observe significant spatial variability in the source impacts across the sampling domain, we instead found that source impacts were relatively homogeneous

    Procyanidin B2 Alleviates Heat-Induced Oxidative Stress through the Nrf2 Pathway in Bovine Mammary Epithelial Cells

    No full text
    The objective of this study was to investigate the protective effects and potential molecular mechanisms of procyanidin B2 (PB2) in MAC-T (mammary alveolar cells-large T antigen) cells during heat stress (HS). The MAC-T cells were divided into three treatment groups: control (37 &deg;C), HS (42 &deg;C), and PB2 + HS (42 &deg;C). Compared with MAC-T cells that were consistently cultured at 37 &deg;C, acute HS treatment remarkably decreased cell viability, reduced activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and elevated intracellular levels of malondialdehyde (MDA) and reactive oxygen species (ROS). Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) was activated and translocated to the nucleus, in accompaniment with upregulation of Nrf2, heme oxygenase 1 (HO-1), thioredoxin reductase 1 (Txnrd1), and heat shock protein 70 (HSP70). In parallel, both mRNA transcript and actual protein secretion of pro-inflammatory cytokines, including tumor necrosis factor-&alpha; (TNF-&alpha;) and interleukin-1&beta; (IL-1&beta;), were increased by heat stress. Pretreatment of MAC-T cells with 0~25 &mu;M PB2 alleviated the decline of cell viability by HS in a dose-dependent fashion and protected cells against HS-induced oxidative stress, as evidenced by significantly improved CAT, SOD, and T-AOC activity, as well as with decreased MDA and ROS generation. Furthermore, PB2 further activated the Nrf2 signaling pathway and reversed the inflammatory response induced by HS. Silencing of Nrf2 by si-Nrf2 transfection not only exacerbated HS-induced cell death and provoked oxidative stress and the inflammatory response, but also greatly abolished the cytoprotective effects under HS of PB2. In summary, PB2 protected MAC-T cells against HS-induced cell death, oxidative stress, and inflammatory response, partially by operating at the Nrf2 signal pathway
    corecore