44 research outputs found
Use of biologics for inflammatory bowel disease in Hong Kong: consensus statement
published_or_final_versio
Imaging of X-Ray-Excited Emissions from Quantum Dots and Biological Tissue in Whole Mouse
© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the articleâs Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the articleâs Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Optical imaging in clinical and preclinical settings can provide a wealth of biological information, particularly when coupled with targetted nanoparticles, but optical scattering and absorption limit the depth and resolution in both animal and human subjects. Two new hybrid approaches are presented, using the penetrating power of X-rays to increase the depth of optical imaging. Foremost, we demonstrate the excitation by X-rays of quantum-dots (QD) emitting in the near-infrared (NIR), using a clinical X-ray system to map the distribution of QDs at depth in whole mouse. We elicit a clear, spatially-resolved NIR signal from deep organs (brain, liver and kidney) with short (1 second) exposures and tolerable radiation doses that will permit future in vivo applications. Furthermore, X-ray-excited endogenous emission is also detected from whole mouse. The use of keV X-rays to excite emission from QDs and tissue represent novel biomedical imaging technologies, and exploit emerging QDs as optical probes for spatial-temporal molecular imaging at greater depth than previously possible.Peer reviewe
Preserving Differential Privacy in Convolutional Deep Belief Networks
The remarkable development of deep learning in medicine and healthcare domain
presents obvious privacy issues, when deep neural networks are built on users'
personal and highly sensitive data, e.g., clinical records, user profiles,
biomedical images, etc. However, only a few scientific studies on preserving
privacy in deep learning have been conducted. In this paper, we focus on
developing a private convolutional deep belief network (pCDBN), which
essentially is a convolutional deep belief network (CDBN) under differential
privacy. Our main idea of enforcing epsilon-differential privacy is to leverage
the functional mechanism to perturb the energy-based objective functions of
traditional CDBNs, rather than their results. One key contribution of this work
is that we propose the use of Chebyshev expansion to derive the approximate
polynomial representation of objective functions. Our theoretical analysis
shows that we can further derive the sensitivity and error bounds of the
approximate polynomial representation. As a result, preserving differential
privacy in CDBNs is feasible. We applied our model in a health social network,
i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for
human behavior prediction, human behavior classification, and handwriting digit
recognition tasks. Theoretical analysis and rigorous experimental evaluations
show that the pCDBN is highly effective. It significantly outperforms existing
solutions
How Do Microbial Pathogens Make CENs?
This article does not have an abstract
DHX9 Helicase promotes R-loop formation in cells with impaired RNA splicing
Unresolved R-loops can represent a threat to genome stability. Here the authors reveal that DHX9 helicase can promote R-loop formation in the absence of splicing factors SFPQ and SF3B3
Chronic CaMKII inhibition blunts the cardiac contractile response to exercise training
Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role modulating cardiac function in both health and disease. Here, we determined the effect of chronic CaMKII inhibition during an exercise training program in healthy mice. CaMKII was inhibited by KN-93 injections. Mice were randomized to the following groups: sham sedentary, sham exercise, KN-93 sedentary, and KN-93 exercise. Cardiorespiratory function was evaluated by ergospirometry during treadmill running, echocardiography, and cardiomyocyte fractional shortening and calcium handling. The results revealed that KN-93 alone had no effect on exercise capacity or fractional shortening. In sham animals, exercise training increased maximal oxygen uptake by 8% (p < 0.05) compared to a 22% (p < 0.05) increase after exercise in KN-93 treated mice (group difference p < 0.01). In contrast, in vivo fractional shortening evaluated by echocardiography improved after exercise in sham animals only: from 25 to 32% (p < 0.02). In inactive mice, KN-93 reduced rates of diastolic cardiomyocyte re-lengthening (by 25%, p < 0.05) as well as Ca2+ transient decay (by 16%, p < 0.05), whereas no such effect was observed after exercise training. KN-93 blunted exercise training response on cardiomyocyte fractional shortening (63% sham vs. 18% KN-93; p < 0.01 and p < 0.05, respectively). These effects could not be solely explained by the Ca2+ transient amplitude, as KN-93 reduced it by 20% (p < 0.05) and response to exercise training was equal (64% sham and 47% KN-93; both p < 0.01). We concluded that chronic CaMKII inhibition increased time to 50% re-lengthening which were recovered by exercise training, but paradoxically led to a greater increase in maximal oxygen uptake compared to sham mice. Thus, the effect of chronic CaMKII inhibition is multifaceted and of a complex nature
Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at âs = 13 TeV with ATLAS
The inclusive cross-section for the associated production of a W boson and top
quark is measured using data from proton-proton collisions at â
s = 13 TeV. The dataset
corresponds to an integrated luminosity of 3.2 fbâ1
, and was collected in 2015 by the ATLAS
detector at the Large Hadron Collider at CERN. Events are selected requiring two opposite
sign isolated leptons and at least one jet; they are separated into signal and control regions
based on their jet multiplicity and the number of jets that are identified as containing b
hadrons. The W t signal is then separated from the ttÂŻ background using boosted decision
tree discriminants in two regions. The cross-section is extracted by fitting templates to the
data distributions, and is measured to be ÏW t = 94±10 (stat.)
+28
â22 (syst.)±2 (lumi.) pb. The
measured value is in good agreement with the SM prediction of Ïtheory = 71.7±1.8 (scale)±
3.4 (PDF) pb [1]
Tgf-ÎČ signaling : from tissue fibrosis to tumor microenvironment
202110 bcvcVersion of RecordPublishe