3 research outputs found

    Charge exchange emission and cold clumps in multi-phase galactic outflows

    Get PDF
    Large-scale outflows from starburst galaxies are multi-phase, multi-component fluids. Charge-exchange lines which originate from the interfacing surface between the neutral and ionised components are a useful diagnostic of the cold dense structures in the galactic outflow. From the charge-exchange lines observed in the nearby starburst galaxy M82, we conduct surface-to-volume analyses and deduce that the cold dense clumps in its galactic outflow have flattened shapes, resembling a hamburger or a pancake morphology rather than elongated shapes. The observed filamentary Hα\alpha features are therefore not prime charge-exchange line emitters. They are stripped material torn from the slow moving dense clumps by the faster moving ionised fluid which are subsequently warmed and stretched into elongated shapes. Our findings are consistent with numerical simulations which have shown that cold dense clumps in galactic outflows can be compressed by ram pressure, and also progressively ablated and stripped before complete disintegration. We have shown that some clumps could survive their passage along a galactic outflow. These are advected into the circumgalactic environment, where their remnants would seed condensation of the circumgalactic medium to form new clumps. The infall of these new clumps back into the galaxy and their subsequent re-entrainment into the galactic outflow form a loop process of galactic material recycling.Comment: 17 pages, 6 figures; accepted for publication in MNRA

    Diffusion-Dominated Pinch-Off of Ultralow Surface Tension Fluids

    Full text link
    We study the breakup of a liquid thread inside another liquid at different surface tensions. In general, the pinch-off of a liquid thread is governed by the dynamics of fluid flow. However, when the interfacial tension is ultralow (2 to 3 orders lower than normal liquids), we find that the pinch-off dynamics can be governed by bulk diffusion. By studying the velocity and the profile of the pinch-off, we explain why the diffusion-dominated pinch-off takes over the conventional breakup at ultralow surface tensions.Comment: 7 pages, 5 figures. Published versio
    corecore