39 research outputs found

    Activated Carbon Produced from Agricultural Residues

    Get PDF
    A process for producing activated carbon from agricultural residues by heating the residues to a temperature in the range of about 250° C. to about 550° C. to volatilize organic compounds in the residues and to carbonize the residues and further heating to activate the carbonized residues. Activated carbon produced from agricultural residues

    Effects of Growth Hormone Treatment on Height, Weight, and Obesity in Taiwanese Patients with Prader-Willi Syndrome

    Get PDF
    BackgroundInformation regarding the efficacy of growth hormone (GH) therapy in Asian Prader-Willi syndrome (PWS) patients is lacking. We report our experience with GH treatment in children with PWS in Taiwan.MethodsForty-six PWS patients (27 males, 19 females; age range, 1 year 4 months to 13 years 7 months) who received and/or who are currently receiving GH treatment (0.1 IU/kg/day subcutaneously) for a period from 1 year to 3 years were retro-spectively analyzed. We evaluated height, weight, body mass index (BMI) and Rohrer index, before and after GH treatment.ResultsAfter patients had received GH for 1, 2 and 3 years, a significant improvement in mean height standard deviation score (SDS) was noted from −1.24 to −0.31 (p <0.01), 0.00 (p <0.001) and −0.26 (p <0.001), respectively. Mean BMI SDS decreased significantly from 1.93 to 1.13 (p <0.05) after 1 year of treatment; however, no significant changes were observed afterward. Mean Rohrer index decreased significantly, from 224.2 to 186.6 (p <0.001), 178.9 (p <0.001) and 169.3 (p <0.001). No significant gender or genotype pattern differences were noted among the 4 parameters examined.ConclusionThis 3-year, retrospective study indicates that PWS patients benefit from GH therapy in height increase and improved body composition

    Changes in Corneal Basal Epithelial Phenotypes in an Altered Basement Membrane

    Get PDF
    To examine the corneal epithelial phenotype in an altered basement membrane.Corneas from 9 patients with symptoms of continuous unstable corneal curvature (CUCC) were harvested by penetrating keratoplasty and subjected to histology examination and immunohistochemical staining with transactivating and N-terminally truncated pP63 transcript (ΔNp63), cytokeratin 3 (Krt3), ATP-binding cassette sub-family G member 2 (ABCG2), connexin 43 (CX43), p38 mitogen-activated protein kinases (p38MAPK), activating protein 2 (TFAP2), and extracellular signal-regulated kinase (Erk1/2) monoclonal antibodies. Positive immunostaining with ABCG2, p38MAPK, and TFAP2 monoclonal antibodies was observed in the basal epithelial cells of CUCC patients, and CX43 and ΔNp63 were detected in the full-thickness epithelial cells of CUCC patients.Our results indicate that alteration of the corneal basement membrane induces a de-differentiation-like phenotype in corneal basal epithelial cells

    Biomechanical Effects of Diameters of Implant Body and Implant Platform in Bone Strain around an Immediately Loaded Dental Implant with Platform Switching Concept

    No full text
    Dental implants designed with platform switching have been used clinically to reduce crestal bone resorption. The aim of this study was to determine the biomechanical effects of loading types, diameter of platform, and implant diameter in bone strain around immediately loaded implants with platform switching concept. Platform-switching features of dental implants with various diameters of implant body and implant platform (named as RP5.0, RP4.3, and NP3.5) were inserted into artificial bone blocks. The initial implant stability was confirmed using a Periotest device before the loading test. Rosette strain gauges were placed on the alveolar region around the implants, and peak values of the bone strain during a 190-N vertical load or 30-degree lateral load were measured by a data acquisition system. The Kruskal-Wallis test and post-hoc pairwise comparisons were performed as statistical analyses. The median Periotest values of the RP5.0, RP4.3, and NP3.5 implants ranged from &#8722;6.59 to &#8722;7.34. The RP5.0 implant always showed the lowest bone strain around the implant, regardless of whether a vertical or lateral load was applied. Relative to the RP4.3 and NP3.5 implants, the RP4.3 implant produced a higher bone strain (by approximately 8%) under a vertical load but a lower bone strain (by approximately 25%) under a lateral load. This study confirmed that using a wider implant could relieve the bone strain around an immediately loaded implant with platform switching concept especially under lateral loading

    Biomass as an Alternative Energy

    No full text
    The world energy consumption is expanding due to increase in population and is projected to increase by 44 percent from 2006 to 2030. China and India are the fastest growing non-OECD economies with their combined energy use increasing nearly twofold and making up to 28 percent of world energy consumption by 2030. The growing concerns over global warming forces us to find an alternative, renewable or sustainable source of energy, which can reduce carbon footprint in the environment and the most often considered are biomass resources—for example, prairie grasses, forestry and mill residues, nongrain parts of food crops, and urban wood wastes that are typically discarded in landfills. The paper focuses on analyzing the technology management issues while using biomass as an alternative energy source, discusses the importance of biomass energy to the future energy mix, provides current updates on the world energy consumption and the energy outlook for next 20 years. Further, the paper analyzes technology management issues with reference to technical, social, environmental, economical and political perspectives

    Acetic-Acid Plasma-Polymerization on Polymeric Substrates for Biomedical Application

    No full text
    Cold plasma is an emerging technology offering many potential applications for regenerative medicine or tissue engineering. This study focused on the characterization of the carboxylic acid functional groups deposited on polymeric substrates using a plasma polymerization process with an acetic acid precursor. The acetic acid precursor contains oxygen and hydrocarbon that, when introduced to a plasma state, forms the polylactide-like film on the substrates. In this study, polymeric substrates were modified by depositing acetic acid plasma film on the surface to improve hydrophilic quality and biocompatibility. The experimental results that of electron spectroscopy for chemical analysis (ESCA) to show for acetic acid film, three peaks corresponding to the C&ndash;C group (285.0 eV), C&ndash;O group (286.6 eV), and C=O group (288.7 eV) were observed. The resulting of those indicated that appropriate acetic acid plasma treatment could increase the polar components on the surface of substrates to improve the hydrophilicity. In addition, in vitro cell culture studies showed that the embryonic stem (ES) cell adhesion on the acetic acid plasma-treated polymeric substrates is better than the untreated. Such acetic acid film performance makes it become a promising candidate as the surface coating layer on polymeric substrates for biomedical application
    corecore