19 research outputs found

    Deformation rule of bored pile & steel support for deep foundation pit in sandy pebble geology

    Get PDF
    Regarding the whole excavation process of the support system of the Southwest Jiaotong University Station of Chengdu Metro Line 6 (the deep foundation pit bored pile + steel support and support system) as the engineering background, this paper studies the deformation rule of the deep foundation pit bored pile + steel support of the sandy pebble foundation. The deformation rule of this support system, the settlement rule of the ground surface outside the pit, and the rule of the uplift of the loose at the bottom of the pit are studied. A key analysis of the positive corner of the foundation pit is conducted, and the rationality of the optimization of the support scheme is evaluated. This paper provides effective guidance for the subsequent deep foundation pit construction and provides a reference for deep foundation pit construction

    Stabilize and Flatten Multi-Wavelength Erbium-Doped Fiber Laser through Accurate Hybrid Dual-Ring-Configuration Control

    No full text
    In order to enhance the practicality of multi-wavelength erbium-doped fiber lasers (MWEDFLs), a novel hybrid dual-ring configuration is proposed in this article, which can flatten the outputs through an optical nonlinear-polarization-rotation-based ring cavity and stabilize the shifts of power and central wavelength of oscillations through an electrical fuzzy-control-based feedback. The experiment results show that, our scheme achieves more than 10 stable oscillations with the dramatic improvements in flatness and working stability. Under dual-ring configuration, the output intensity of MWEDFL reaches ~−7.5 dBm with the flatness of ±0.42 dB. And the in-stabilities in terms of power and central wavelength are respectively constrained ±0.182 dBm and ±0.029 nm within 10-h continuous operation

    A Virtual Channel Allocation Algorithm for NoC

    No full text
    Virtual channel (VC) flow control proves to be an alternative way to promote network performance, but uniform VC allocation in the network may be at the cost of chip area and power consumption. We propose a novel VC number allocation algorithm customizing the VCs in network based on the characteristic of the target application. Given the characteristic of target application and total VC number budget, the block probability for each port of nodes in the network can be obtained with an analytical model. Then VCs are added to the port with the highest block probability one by one. The simulation results indicate that the proposed algorithm reduces buffer consumption by 14.58%~51.04% under diverse traffic patterns and VC depth, while keeping similar network performance

    Association of chorioamnionitis with infertility treatment and subsequent neonatal outcomes in the US: a population-based cohort study

    No full text
    Abstract Background Chorioamnionitis (CAM) is a common risk factor for preterm births, resulting in several adverse outcomes. The association between infertility treatment and CAM is unclear. Therefore, this study examined the association between infertility treatment and CAM and described subsequent neonatal outcomes. Methods This population-based cohort study used data from the National Vital Statistics System Database. We included women who had a singleton live birth from January 1, 2016 to December 31, 2018. Women-infant pairs were stratified by infertility treatment, and the main outcome was a reported diagnosis of CAM in a checkbox format: clinical CAM or maternal temperature of > 38 °C. Multivariate logistic regression was used to examine the association between infertility treatment and CAM and the effect of infertility treatment on neonatal outcomes in women diagnosed with CAM. Results The final sample comprised 10,900,495 woman-infant pairs, and 1.4% received infertility treatment. Compared with the natural conception group, women receiving infertility treatment had a significantly higher risk of CAM (adjusted odds ratio [aOR] 1.772 [95% confidence interval {CI}, 1.718–1.827]). Furthermore, newborns exposed to CAM had a higher risk of very low birth weight (VLBW) (aOR, 2.083 [95% CI, 1.664–2.606], P < .001), preterm birth (aOR, 1.497 [95% CI, 1.324–1.693]; P < .001), neonatal intensive care unit admission (aOR, 1.234 [95% CI, 1.156–1.317]; P < .001), and other adverse neonatal outcomes in the infertility treatment group compared with ones conceived naturally. Conclusions This study found that women who received infertility treatment had a higher risk of CAM. And CAM deteriorated neonatal outcomes in the infertility treatment group

    Recombinant SFRP5 protein significantly alleviated intrahepatic inflammation of nonalcoholic steatohepatitis

    No full text
    Abstract Background Secreted frizzled-related protein 5 (SFRP5) is an anti-inflammatory adipokine modulating metabolism dysfunction. This study aims to observe the effect of recombinant SFRP5 protein on nonalcoholic steatohepatitis (NASH). Methods We set up a prokaryotic expression system and purified the recombinant SFRP5 protein. Recombinant SFRP5 protein was further identified by SDS-PAGE, western blot, high performance liquid chromatography (HPLC), protein mass spectrometry and in vitro Wnt5a-binding test. NASH mouse model was induced by methionine and choline deficient diet (MCDD) for 2 weeks. SFRP5 treatment group received intraperitoneal injection with a dosage of 10μg/kg SFRP5 twice a day for 2 weeks. Saline was used as control. Inflammation and fatty lesion score of liver tissue pathology and serum transaminase level were compared. Results The purity of recombinant SFRP5 protein is 90% identified by HPLC. Its molecule size is 36,096.08 tested by mass spectrometry. Recombinant SFRP5 can specifically bind with Wnt5a which verifies its activity in vitro. The endotoxin level of this recombinant protein is 0.01EU/μg-0.1EU/μg and is suitable for animal experiment. SFRP5 can significantly improve liver inflammation (SFRP5 vs. control, 1.40 ± 0.70 vs. 2.00 ± 0.47, P < 0.05) as well as fatty lesion scores (SFRP5 vs. control, 1.40 ± 0.97 vs. 2.20 ± 0.63, P < 0.05), and lower ALT and AST levels. The mRNA expression of proinflammatory adipokines (IL-1β, IL-6, TNFα and MCP-1) in liver was down-regulated significantly after SFRP5 intervention. Immunohistochemistry and quantitative PCR revealed a dramatically down-regulation of F4/80 in liver after SFRP5 treatment. Conclusions Recombinant SFRP5 protein significantly alleviated NASH induced by MCDD

    A single cell transcriptional roadmap of human pacemaker cell differentiation

    No full text
    Each heartbeat is triggered by the sinoatrial node (SAN), the primary pacemaker of the heart. Studies in animal models have revealed that pacemaker cells share a common progenitor with the (pro)epicardium, and that the pacemaker cardiomyocytes further diversify into 'transitional', 'tail', and 'head' subtypes. However, the underlying molecular mechanisms, especially of human pacemaker cell development, are poorly understood. Here, we performed single cell RNA sequencing (scRNA-seq) and trajectory inference on human induced pluripotent stem cells (hiPSCs) differentiating to SAN-like cardiomyocytes (SANCMs) to construct a roadmap of transcriptional changes and lineage decisions. In differentiated SANCM, we identified distinct clusters that closely resemble different subpopulations of the in vivo SAN. Moreover, the presence of a side population of proepicardial cells suggested their shared ontogeny with SANCM, as also reported in vivo. Our results demonstrate that the divergence of SANCM and proepicardial lineages is determined by WNT signaling. Furthermore, we uncovered roles for TGFβ and WNT signaling in the branching of transitional and head SANCM subtypes, respectively. These findings provide new insights into the molecular processes involved in human pacemaker cell differentiation, opening new avenues for complex disease modeling in vitro and inform approaches for cell therapy-based regeneration of the SAN

    Molecular and electrophysiological evaluation of human cardiomyocyte subtypes to facilitate generation of composite cardiac models

    No full text
    Paucity of physiologically relevant cardiac models has limited the widespread application of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in drug development. Here, we performed comprehensive characterization of hiPSC-derived cardiomyocyte subtypes from 2D and 3D cultures and established a novel 3D model to study impulse initiation and propagation. Directed differentiation approaches were used to generate sinoatrial nodal (SANCM), atrial (ACM) and ventricular cardiomyocytes (VCM). Single cell RNA sequencing established that the protocols yield distinct cell populations in line with expected identities, which was also confirmed by electrophysiological characterization. In 3D EHT cultures of all subtypes, we observed prominent expression of stretch-responsive genes such as NPPA. Response to rate modulating drugs noradrenaline, carbachol and ivabradine were comparable in single cells and EHTs. Differences in the speed of impulse propagation between the subtypes were more pronounced in EHTs compared with 2D monolayers owing to a progressive increase in conduction velocities in atrial and ventricular cardiomyocytes, in line with a more mature phenotype. In a novel binary EHT model of pacemaker-atrial interface, the SANCM end of the tissue consistently paced the EHTs under baseline conditions, which was inhibited by ivabradine. Taken together, our data provide comprehensive insights into molecular and electrophysiological properties of hiPSC-derived cardiomyocyte subtypes, facilitating the creation of next generation composite cardiac models for drug discovery, disease modeling and cell-based regenerative therapies
    corecore