111 research outputs found

    Interleukin 4 Controls the Pro-Tumoral Role of Macrophages in Mammary Cancer Pulmonary Metastasis in Mice

    Get PDF
    SIMPLE SUMMARY: Metastasis is the main cause of death from breast cancer. In mouse models of breast cancer lung metastasis, macrophages enhance metastasis by promoting tumor cell seeding and persistent growth. Here, we show that interleukin-4 (IL4) is required for this process as IL4 receptor (IL4rα)-null mice develop fewer and smaller lung metastases. This deficiency is partially rescued by adoptive transfer of wild-type monocytes. IL4 signaling in macrophages upregulates the expression of the chemokine receptor CXCR2, necessary for IL4-mediated tumor cell extravasation in vitro. In addition, expression of several other genes already causally associated with lung metastasis including Ccl2, Csf1, Ccr1, Hgf and Flt1 are upregulated in macrophages. High-resolution intravital imaging at the time of metastatic seeding showed reduced physical interaction between tumor cells and IL4rα-deficient macrophages, showing the dependence on IL4. We conclude that IL4 signaling in monocytes and macrophages is important during seeding and growth of breast metastasis in the lung. ABSTRACT: Metastasis is the systemic manifestation of cancer and the main cause of death from breast cancer. In mouse models of lung metastases, recruitment of classical monocytes from blood to the lung and their differentiation to metastasis-associated macrophages (MAMs) facilitate cancer cell extravasation, survival and growth. Ablation of MAMs or their monocytic progenitors inhibits metastasis. We hypothesized that factors controlling macrophage polarization modulate tumor cell extravasation in the lung. We evaluated whether signaling by Th1 or Th2 cytokines in macrophages affected transendothelial migration of tumor cells in vitro. Interferon gamma and LPS inhibited macrophage-dependent tumor cell extravasation while the Th2 cytokine interleukin-4 (IL4) enhanced this process. We demonstrated that IL4 receptor (IL4rα)-null mice developed fewer and smaller lung metastasis in E0771-LG mammary cancer models of this disease. Adoptive transfer of wild-type monocytes to IL4rα-deficient mice partially rescued this phenotype. IL4 signaling in macrophages controlled the expression of the chemokine receptor CXCR2, necessary for IL4-mediated tumor cell extravasation in vitro. Furthermore, IL4 signaling in macrophages regulated the transcript abundance of several other genes already causally associated with mammary cancer lung metastasis including Ccl2, Csf1, Ccr1, Hgf and Flt1. The central role of IL4 signaling in MAMs was confirmed by high-resolution intravital imaging of the lung in mice at the time of metastatic seeding, which showed reduced physical interaction between tumor cells and IL4rα-deficient macrophages. This interaction with wild-type MAMs enhanced tumor cell survival and seeding, which was lost in the IL4rα mice. These data indicate that IL4 signaling in monocytes and macrophages is key during seeding and growth of breast metastasis in the lung, as it regulates pro-tumoral paracrine signaling between cancer cells and macrophages

    Exposure to Bisphenol a Substitutes and Gestational Diabetes Mellitus: A Prospective Cohort Study in China

    Get PDF
    Background: The association of bisphenol A (BPA) and gestational diabetes mellitus (GDM) has been investigated in only a small number of studies, and research on the associations between BPA substitutes and GDM is scarce.Objective: We aimed to investigate the associations of four bisphenols [bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF)] levels in urine sample with the risk of gestational diabetes mellitus (GDM) and plasma glucose levels.Methods: A total of 1,841 pregnant women from a cohort study were recruited at their first prenatal examination between 2013 and 2015 in Wuhan, China. Concentrations of four bisphenols (BPA, BPS, BPF, BPAF) were measured in first-trimester urine samples using Ultra-high performance liquid chromatography system coupled to a Triple Quadrupole mass spectrometer (UHPLC-TQMS). An oral glucose tolerance test (OGTT) was performed at 24–28 gestational weeks and GDM was diagnosed post hoc using International Association of Diabetes and Pregnancy Study Groups criteria. We used multivariable logistic regression models to examine the associations of urinary bisphenols with the risk of GDM, and multiple linear regression models to determine the associations between bisphenols exposure and plasma glucose levels.Results: Urinary BPAF was associated with increased odds of GDM among women with normal pre-pregnancy BMI [adjusted odds ratio (aOR) = 1.70 (95% CI: 1.08, 2.67) for the highest group compared to the lowest group], and the association remained significant after additional adjustment for other bisphenols [aOR = 1.68 (95% CI: 1.03, 2.72)]. No significant associations were observed for other bisphenols and GDM. Consistent with the result of GDM, women in the highest BPAF category had a mean of 0.05 mmol/L (95% CI: 0.01, 0.09) higher fasting plasma glucose (FPG) levels than women in the lowest category. For BPA and plasma glucose, non-linear associations were observed between urinary BPA and FPG and the sum of the PG z-score among women who were overweight (p for non-linear association < 0.05). We also found that the per-unit increase in natural log transformed specific gravity adjusted BPS [ln (SG-adj BPS)] was associated with a 0.03 mmol/L (95% CI: 0.01, 0.04) increase in FPG levels and the associations might be modified by fetal sex (p for interaction < 0.05). Among women with female fetus, a per-unit increase in ln (SG-adj BPS) was associated with a 0.04 mmol/L (95% CI: 0.02, 0.06) increase in FPG, a 0.11 mmol/L (95% CI: 0.04, 0.17) increase in 1 h-PG and a 0.19 mmol/L (95% CI: 0.08, 0.30) increase in the sum of PG z-score.Conclusions: Our results provide evidence that BPAF and BPS might be potential risk factors of GDM, which require to be studied further

    CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis

    Get PDF
    Macrophages abundantly found in the tumor microenvironment enhance malignancy(1). At metastatic sites a distinct population of metastasis associated macrophages (MAMs) promote tumor cell extravasation, seeding and persistent growth(2). Our study has defined the origin of these macrophages by showing Gr1+ inflammatory monocytes (IMs) are preferentially recruited to pulmonary metastases but not primary mammary tumors, a process also found for human IMs in pulmonary metastases of human breast cancer cells. The recruitment of these CCR2 (receptor for chemokine CCL2) expressing IMs and subsequently MAMs and their interaction with metastasizing tumor cells is dependent on tumor and stromal synthesized CCL2 (FigS1). Inhibition of CCL2/CCR2 signaling using anti-CCL2 antibodies blocks IM recruitment and inhibits metastasis in vivo and prolongs the survival of tumor-bearing mice. Depletion of tumor cell-derived CCL2 also inhibits metastatic seeding. IMs promote tumor cell extravasation in a process that requires monocyte-derived VEGF. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer (Fig S2)(3-6). Our data provides the mechanistic link between these two clinical associations and indicates new therapeutic targets for treating metastatic breast disease

    CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages

    Get PDF
    Pulmonary metastasis of breast cancer cells is promoted by a distinct population of macrophages, metastasis-associated macrophages (MAMs), which originate from inflammatory monocytes (IMs) recruited by the CC-chemokine ligand 2 (CCL2). We demonstrate here that, through activation of the CCL2 receptor CCR2, the recruited MAMs secrete another chemokine ligand CCL3. Genetic deletion of CCL3 or its receptor CCR1 in macrophages reduces the number of lung metastasis foci, as well as the number of MAMs accumulated in tumor-challenged lung in mice. Adoptive transfer of WT IMs increases the reduced number of lung metastasis foci in Ccl3 deficient mice. Mechanistically, Ccr1 deficiency prevents MAM retention in the lung by reducing MAM–cancer cell interactions. These findings collectively indicate that the CCL2-triggered chemokine cascade in macrophages promotes metastatic seeding of breast cancer cells thereby amplifying the pathology already extant in the system. These data suggest that inhibition of CCR1, the distal part of this signaling relay, may have a therapeutic impact in metastatic disease with lower toxicity than blocking upstream targets

    Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury

    Get PDF
    WNT/β-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma. Here, we analyse the role of macrophage-derived WNT in intestinal repair in mice by inhibiting their release using a macrophage-restricted ablation of Porcupine, a gene essential for WNT synthesis. Such Porcn-depleted mice have normal intestinal morphology but are hypersensitive to radiation injury in the intestine compared with wild-type (WT) littermates. Porcn-null mice are rescued from radiation lethality by treatment with WT but not Porcn-null bone marrow macrophage-conditioned medium (CM). Depletion of extracellular vesicles (EV) from the macrophage CM removes WNT function and its ability to rescue ISCs from radiation lethality. Therefore macrophage-derived EV-packaged WNTs are essential for regenerative response of intestine against radiation
    corecore