241 research outputs found

    Mean-square stability of linear systems over channels with random transmission delays

    Full text link
    This work studies the mean-square stability and stabilization problem for networked feedback systems. Data transmission delays in the network channels of the systems are considered. It is assumed that these delays are i.i.d. processes with given probability mass functions (PMFs). A necessary and sufficient condition of mean-square (input-output) stability is studied for the networked feedback systems in terms of the input-output model and state-space model. Furthermore, according to this condition, mean-square stabilization via output feedback is studied for the networked feedback systems.Comment: arXiv admin note: text overlap with arXiv:2108.1279

    The Nutritional Composition of Maca in Hypocotyls ( Lepidium meyenii

    Get PDF

    Smelt Was the Likely Beneficiary of an Antifreeze Gene Laterally Transferred Between Fishes

    Get PDF
    Background Type II antifreeze protein (AFP) from the rainbow smelt, Osmerus mordax, is a calcium-dependent C-type lectin homolog, similar to the AFPs from herring and sea raven. While C-type lectins are ubiquitous, type II AFPs are only found in a few species in three widely separated branches of teleost fishes. Furthermore, several other non-homologous AFPs are found in intervening species. We have previously postulated that this sporadic distribution has resulted from lateral gene transfer. The alternative hypothesis, that the AFP evolved from a lectin present in a shared ancestor and that this gene was lost in most species, is not favored because both the exon and intron sequences are highly conserved. Results Here we have sequenced and annotated a 160 kb smelt BAC clone containing a centrally-located AFP gene along with 14 other genes. Quantitative PCR indicates that there is but a single copy of this gene within the smelt genome, which is atypical for fish AFP genes. The corresponding syntenic region has been identified and searched in a number of other species and found to be devoid of lectin or AFP sequences. Unlike the introns of the AFP gene, the intronic sequences of the flanking genes are not conserved between species. As well, the rate and pattern of mutation in the AFP gene are radically different from those seen in other smelt and herring genes. Conclusions These results provide stand-alone support for an example of lateral gene transfer between vertebrate species. They should further inform the debate about genetically modified organisms by showing that gene transfer between ‘higher’ eukaryotes can occur naturally. Analysis of the syntenic regions from several fishes strongly suggests that the smelt acquired the AFP gene from the herring

    Comparative Genomics Identifies Candidate Genes for Infectious Salmon Anemia (ISA) Resistance in Atlantic Salmon (Salmo salar)

    Get PDF
    Infectious salmon anemia (ISA) has been described as the hoof and mouth disease of salmon farming. ISA is caused by a lethal and highly communicable virus, which can have a major impact on salmon aquaculture, as demonstrated by an outbreak in Chile in 2007. A quantitative trait locus (QTL) for ISA resistance has been mapped to three microsatellite markers on linkage group (LG) 8 (Chr 15) on the Atlantic salmon genetic map. We identified bacterial artificial chromosome (BAC) clones and three fingerprint contigs from the Atlantic salmon physical map that contains these markers. We made use of the extensive BAC end sequence database to extend these contigs by chromosome walking and identified additional two markers in this region. The BAC end sequences were used to search for conserved synteny between this segment of LG8 and the fish genomes that have been sequenced. An examination of the genes in the syntenic segments of the tetraodon and medaka genomes identified candidates for association with ISA resistance in Atlantic salmon based on differential expression profiles from ISA challenges or on the putative biological functions of the proteins they encode. One gene in particular, HIV-EP2/MBP-2, caught our attention as it may influence the expression of several genes that have been implicated in the response to infection by infectious salmon anemia virus (ISAV). Therefore, we suggest that HIV-EP2/MBP-2 is a very strong candidate for the gene associated with the ISAV resistance QTL in Atlantic salmon and is worthy of further study

    Chromosomal Differences between European and North American Atlantic salmon Discovered by Linkage Mapping and Supported by Fluorescence in situ Hybridization Analysis

    Get PDF
    BACKGROUND:Geographical isolation has generated a distinct difference between Atlantic salmon of European and North American Atlantic origin. The European Atlantic salmon generally has 29 pairs of chromosomes and 74 chromosome arms whereas it has been reported that the North American Atlantic salmon has 27 chromosome pairs and an NF of 72. In order to predict the major chromosomal rearrangements causing these differences, we constructed a dense linkage map for Atlantic salmon of North American origin and compared it with the well-developed map for European Atlantic salmon.RESULTS:The presented male and female genetic maps for the North American subspecies of Atlantic salmon, contains 3,662 SNPs located on 27 linkage groups. The total lengths of the female and male linkage maps were 2,153cM and 968cM respectively, with males characteristically showing recombination only at the telomeres. We compared these maps with recently published SNP maps from European Atlantic salmon, and predicted three chromosomal reorganization events that we then tested using fluorescence in situ hybridization (FISH) analysis. The proposed rearrangements, which define the differences in the karyotypes of the North American Atlantic salmon relative to the European Atlantic salmon, include the translocation of the p arm of ssa01 to ssa23 and polymorphic fusions: ssa26 with ssa28, and ssa08 with ssa29.CONCLUSIONS:This study identified major chromosomal differences between European and North American Atlantic salmon. However, while gross structural differences were significant, the order of genetic markers at the fine-resolution scale was remarkably conserved. This is a good indication that information from the International Cooperation to Sequence the Atlantic salmon Genome, which is sequencing a European Atlantic salmon, can be transferred to Atlantic salmon from North America

    Sampling strategies and integrated reconstruction for reducing distortion and boundary slice aliasing in high-resolution 3D diffusion MRI

    Get PDF
    Purpose: To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing. Methods: Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz-oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing. Results: We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects. Conclusion: The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI

    Hybrid-space reconstruction with add-on distortion correction for simultaneous multi-slab diffusion MRI

    Full text link
    Purpose: This study aims to propose a model-based reconstruction algorithm for simultaneous multi-slab diffusion MRI acquired with blipped-CAIPI gradients (blipped-SMSlab), which can also incorporate distortion correction. Methods: We formulate blipped-SMSlab in a 4D k-space with kz gradients for the intra-slab slice encoding and km (blipped-CAIPI) gradients for the inter-slab encoding. Because kz and km gradients share the same physical axis, the blipped-CAIPI gradients introduce phase interference in the z-km domain while motion induces phase variations in the kz-m domain. Thus, our previous k-space-based reconstruction would need multiple steps to transform data back and forth between k-space and image space for phase correction. Here we propose a model-based hybrid-space reconstruction algorithm to correct the phase errors simultaneously. Moreover, the proposed algorithm is combined with distortion correction, and jointly reconstructs data acquired with the blip-up/down acquisition to reduce the g-factor penalty. Results: The blipped-CAIPI-induced phase interference is corrected by the hybrid-space reconstruction. Blipped-CAIPI can reduce the g-factor penalty compared to the non-blipped acquisition in the basic reconstruction. Additionally, the joint reconstruction simultaneously corrects the image distortions and improves the 1/g-factors by around 50%. Furthermore, through the joint reconstruction, SMSlab acquisitions without the blipped-CAIPI gradients also show comparable correction performance with blipped-SMSlab. Conclusion: The proposed model-based hybrid-space reconstruction can reconstruct blipped-SMSlab diffusion MRI successfully. Its extension to a joint reconstruction of the blip-up/down acquisition can correct EPI distortions and further reduce the g-factor penalty compared with the separate reconstruction.Comment: 10 figures+tables, 8 supplementary figure

    Correlated states in twisted double bilayer graphene

    Full text link
    Electron-electron interactions play an important role in graphene and related systems and can induce exotic quantum states, especially in a stacked bilayer with a small twist angle. For bilayer graphene where the two layers are twisted by a "magic angle", flat band and strong many-body effects lead to correlated insulating states and superconductivity. In contrast to monolayer graphene, the band structure of untwisted bilayer graphene can be further tuned by a displacement field, providing an extra degree of freedom to control the flat band that should appear when two bilayers are stacked on top of each other. Here, we report the discovery and characterization of such displacement-field tunable electronic phases in twisted double bilayer graphene. We observe insulating states at a half-filled conduction band in an intermediate range of displacement fields. Furthermore, the resistance gap in the correlated insulator increases with respect to the in-plane magnetic fields and we find that the g factor according to spin Zeeman effect is ~2, indicating spin polarization at half filling. These results establish the twisted double bilayer graphene as an easily tunable platform for exploring quantum many-body states
    • …
    corecore