358,590 research outputs found

    Multitraining support vector machine for image retrieval

    Get PDF
    Relevance feedback (RF) schemes based on support vector machines (SVMs) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based RF approaches is often poor when the number of labeled feedback samples is small. This is mainly due to 1) the SVM classifier being unstable for small-size training sets because its optimal hyper plane is too sensitive to the training examples; and 2) the kernel method being ineffective because the feature dimension is much greater than the size of the training samples. In this paper, we develop a new machine learning technique, multitraining SVM (MTSVM), which combines the merits of the cotraining technique and a random sampling method in the feature space. Based on the proposed MTSVM algorithm, the above two problems can be mitigated. Experiments are carried out on a large image set of some 20 000 images, and the preliminary results demonstrate that the developed method consistently improves the performance over conventional SVM-based RFs in terms of precision and standard deviation, which are used to evaluate the effectiveness and robustness of a RF algorithm, respectively

    Doping dependance of the spin resonance peak in bilayer high-TcT_c superconductors

    Full text link
    Motivated by a recent experiment on the bilayer Y1x_{1-x}Cax_{x}Ba2_2Cu3_3Oy_y superconductor and based on a bilayer tJt-J model, we calculate the spin susceptibility at different doping densities in the even and odd channels in a bilayer system. It is found that the intensity of the resonance peak in the even channel is much weaker than that in the odd one, with the resonance position being at a higher frequency. While this difference decreases as the doping increases, and both the position and amplitude of the resonance peaks in the two channels are very similar in the deeply overdoped sample. Moreover, the resonance frequency in the odd channel is found to be linear with the critical temperature TcT_c, while the resonance frequency increases as doping decreases in the even channel and tends to saturate at the underdoped sample. We elaborate the results based on the Fermi surface topology and the d-wave superconductivity.Comment: 6 pages, 5 figure

    Concept Validation for Selective Heating and Press Hardening of Automotive Safety Components with Tailored Properties

    Get PDF
    © (2014) Trans Tech Publications, Switzerland.A new strategy termed selective heating and press hardening, for hot stamping of boron steel parts with tailored properties is proposed in this paper. Feasibility studies were carried out through a specially designed experimental programme. The main aim was to validate the strategy and demonstrate its potential for structural optimisation. In the work, a lab-scale demonstrator part was designed, and relevant manufacturing and property-assessment processes were defined. A heating technique and selective-heating rigs were designed to enable certain microstructural distributions in blanks to be obtained. A hot stamping tool set was designed for forming and quenching the parts. Demonstrator parts of full martensite phase, full initial phase, and differentially graded microstructures have been formed with high dimensional quality. Hardness testing and three point bending tests were conducted to assess the microstructure distribution and load bearing performance of the as-formed parts, respectively. The feasibility of the concept has been validated by the testing results

    A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859

    Full text link
    XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853. Here, we present the results of the analysis of recent INTEGRAL observations, aimed at assessing the long-term variability of the hard X-ray emission, and thus the stability of the accretion state. We confirm that the source behaves as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS J12270-4859 hosts a neutron star in a propeller state, a state we investigate in detail, developing a theoretical model to reproduce the associated X-ray and gamma-ray properties. This model can be understood as being of a more general nature, representing a viable alternative by which LMXBs can appear as gamma-ray sources. In particular, this may apply to the case of millisecond pulsars performing a transition from a state powered by the rotation of their magnetic field, to a state powered by matter in-fall, such as that recently observed from the transitional pulsar PSR J1023+0038. While the surface magnetic field of a typical NS in a LMXB is lower by more than four orders of magnitude than the much more intense fields of neutron stars accompanying high-mass binaries, the radius at which the matter in-flow is truncated in a NS-LMXB system is much lower. The magnetic field at the magnetospheric interface is then orders of magnitude larger at this interface, and as consequence, so is the power to accelerate electrons. We demonstrate that the cooling of the accelerated electron population takes place mainly through synchrotron interaction with the magnetic field permeating the interface, and through inverse Compton losses due to the interaction between the electrons and the synchrotron photons they emit. We found that self-synchrotron Compton processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References update

    Theory of the vortex matter transformations in high Tc superconductor YBCO

    Full text link
    Flux line lattice in type II superconductors undergoes a transition into a "disordered" phase like vortex liquid or vortex glass, due to thermal fluctuations and random quenched disorder. We quantitatively describe the competition between the thermal fluctuations and the disorder using the Ginzburg -- Landau approach. The following T-H phase diagram of YBCO emerges. There are just two distinct thermodynamical phases, the homogeneous and the crystalline one, separated by a single first order transitions line. The line however makes a wiggle near the experimentally claimed critical point at 12T. The "critical point" is reinterpreted as a (noncritical) Kauzmann point in which the latent heat vanishes and the line is parallel to the T axis. The magnetization, the entropy and the specific heat discontinuities at melting compare well with experiments.Comment: 4 pages 3 figure

    Correlated Spectral and Temporal Variability in the High-Energy Emission from Blazars

    Get PDF
    Blazar flare data show energy-dependent lags and correlated variability between optical/X-ray and GeV-TeV energies, and follow characteristic trajectories when plotted in the spectral-index/flux plane. This behavior is qualitatively explained if nonthermal electrons are injected over a finite time interval in the comoving plasma frame and cool by radiative processes. Numerical results are presented which show the importance of the effects of synchrotron self-Compton cooling and plasmoid deceleration. The use of INTEGRAL to advance our understanding of these systems is discussed.Comment: 8 pages, 5 figures, uses epsf.sty, rotate.sty Invited paper in "The Extreme Universe," 3rd INTEGRAL Workshop, 14-18 September 1998, Taorimina, Ital
    corecore