275 research outputs found

    Transforming High School Counseling: Counselors\u27 Roles, Practices, and Expectations for Students\u27 Success

    Get PDF
    This study examined the current roles and practices of American high school counselors in relation to the ASCA National Model. Expectations for student success by high school counselors were also examined and compared to those of teachers\u27 and school administrators\u27. A nationally representative sample of 852 lead counselors from 944 high schools was surveyed as part of the High School Longitudinal Study: 2009-2012. Findings are examined in the light of the National Model and advocated practices

    Stochastic particle advection velocimetry (SPAV): theory, simulations, and proof-of-concept experiments

    Full text link
    Particle tracking velocimetry (PTV) is widely used to measure time-resolved, three-dimensional velocity and pressure fields in fluid dynamics research. Inaccurate localization and tracking of particles is a key source of error in PTV, especially for single camera defocusing, plenoptic imaging, and digital in-line holography (DIH) sensors. To address this issue, we developed stochastic particle advection velocimetry (SPAV): a statistical data loss that improves the accuracy of PTV. SPAV is based on an explicit particle advection model that predicts particle positions over time as a function of the estimated velocity field. The model can account for non-ideal effects like drag on inertial particles. A statistical data loss that compares the tracked and advected particle positions, accounting for arbitrary localization and tracking uncertainties, is derived and approximated. We implement our approach using a physics-informed neural network, which simultaneously minimizes the SPAV data loss, a Navier-Stokes physics loss, and a wall boundary loss, where appropriate. Results are reported for simulated and experimental DIH-PTV measurements of laminar and turbulent flows. Our statistical approach significantly improves the accuracy of PTV reconstructions compared to a conventional data loss, resulting in an average reduction of error close to 50%. Furthermore, our framework can be readily adapted to work with other data assimilation techniques like state observer, Kalman filter, and adjoint-variational methods

    Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis

    Get PDF
    The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb

    Incorporating basic calibrations in existing machine-learned turbulence modeling

    Full text link
    This work aims to incorporate basic calibrations of Reynolds-averaged Navier-Stokes (RANS) models as part of machine learning (ML) frameworks. The ML frameworks considered are tensor-basis neural network (TBNN), physics-informed machine learning (PIML), and field inversion & machine learning (FIML) in J. Fluid Mech., 2016, 807, 155-166, Phys. Rev. Fluids, 2017, 2(3), 034603 and J. Comp. Phys., 2016, 305, 758-774, and the baseline RANS models are the one-equation Spalart-Allmaras model, the two-equation kk-ω\omega model, and the seven-equation Reynolds stress transport models. ML frameworks are trained against plane channel flow and shear-layer flow data. We compare the ML frameworks and study whether the machine-learned augmentations are detrimental outside the training set. The findings are summarized as follows. The augmentations due to TBNN are detrimental. PIML leads to augmentations that are beneficial inside the training dataset but detrimental outside it. These results are not affected by the baseline RANS model. FIML's augmentations to the two eddy viscosity models, where an inner-layer treatment already exists, are largely neutral. Its augmentation to the seven-equation model, where an inner-layer treatment does not exist, improves the mean flow prediction in a channel. Furthermore, these FIML augmentations are mostly non-detrimental outside the training dataset. In addition to reporting these results, the paper offers physical explanations of the results. Last, we note that the conclusions drawn here are confined to the ML frameworks and the flows considered in this study. More detailed comparative studies and validation & verification studies are needed to account for developments in recent years

    Mott-Kondo Insulator Behavior in the Iron Oxychalcogenides

    Full text link
    We perform a combined experimental-theoretical study of the Fe-oxychalcogenides (FeO\emph{Ch}) series La2_{2}O2_{2}Fe2_{2}O\emph{M}2_{2} (\emph{M}=S, Se), which is the latest among the Fe-based materials with the potential \ to show unconventional high-Tc_{c} superconductivity (HTSC). A combination of incoherent Hubbard features in X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectra, as well as resitivity data, reveal that the parent FeO\emph{Ch} are correlation-driven insulators. To uncover microscopics underlying these findings, we perform local density approximation-plus-dynamical mean field theory (LDA+DMFT) calculations that unravel a Mott-Kondo insulating state. Based upon good agreement between theory and a range of data, we propose that FeO\emph{Ch} may constitute a new, ideal testing ground to explore HTSC arising from a strange metal proximate to a novel selective-Mott quantum criticality
    • …
    corecore