3 research outputs found

    Electric field driven quantum phase transition between band insulator and topological insulator

    Get PDF
    We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.Comment: 4 pages, 4 figure

    D'yakonov-Perel' spin relaxation in InSb/AlInSb quantum wells

    Full text link
    We investigate theoretically the D'yakonov-Perel' spin relaxation time by solving the eight-band Kane model and Poisson equation self-consistently. Our results show distinct behavior with the single-band model due to the anomalous spin-orbit interactions in narrow band-gap semiconductors, and agree well with the experiment values reported in recent experiment (K. L. Litvinenko, et al., New J. Phys. \textbf{8}, 49 (2006)). We find a strong resonant enhancement of the spin relaxation time appears for spin align along [11ˉ01\bar{1}0] at a certain electron density at 4 K. This resonant peak is smeared out with increasing the temperature.Comment: 4 pages, 4 figure

    Anomalous Rashba spin-orbit interaction in InAs/GaSb quantum wells

    No full text
    We theoretically investigate the Rashba spin-orbit interaction in InAs/GaSb quantum wells (QWs). We find that the Rashba spin-splitting (RSS) sensitively depends on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field. (C) 2008 American Institute of Physics
    corecore