18 research outputs found

    Identification of bone morphogenetic proteins 2 and 4 in commercial demineralized freeze-dried bone allograft preparations: pilot study

    No full text
    BACKGROUND: Demineralized freeze-dried bone allografts (DFDBAs) have been proposed as a useful adjunct in periodontal therapy to induce periodontal regeneration through the induction of new bone formation. The presence of bone morphogenetic proteins (BMPs) within the demineralized matrix has been proposed as a possible mechanism through which DFDBA may exert its biologic effect. However, in recent years, the predictability of results using DFDBA has been variable and has led to its use being questioned. One reason for the variability in tissue response may be attributed to differences in the processing of DFDBA, which may lead to loss of activity of any bioactive substances within the DFDBA matrix. Therefore, the purpose of this investigation was to determine whether there are detectable levels of bone morphogenetic proteins in commercial DFDBA preparations. METHODS: A single preparation of DFDBA was obtained from three commercial sources. Each preparation was studied in triplicate. Proteins within the DFDBA samples were first extracted with 4M guanidinium HCI for seven days at 40 degrees celsius and the residue was further extracted with 4M guanidinium HCL/EDTA for seven days at 40 degrees celsius. Two anti-human BMP-2 and -4 antibodies were used for the detection of the presence of BMP's in the extracts. RESULTS: Neither BMP-2 nor BMP-4 was detected in any of the extracts. When recombinant human BMP-2 and -4 were added throughout the extraction process of DFDBA extraction, not only were intact proteins detected but smaller molecular weight fragments were also noted in the extract. CONCLUSIONS: These results indicate that all of the DFDBA samples tested had no detectable amounts of BMP-2 and -4. In addition, an unknown substance present in the DFDBA may be responsible for degradation of whatever BMPs might be present

    Delivery of maternal thyroid hormones to the fetus

    No full text
    Thyroid hormones (THs) play an essential role in ensuring normal fetal development, particularly that of the central nervous system. Before 16 weeks gestation, the fetus relies solely on transplacental delivery of maternal T-4, and clinical studies suggest that even mild maternal thyroid hormone deficiency adversely affects the intellectual function of offspring. Maternofetal TH transfer is regulated by trophoblast cell membrane transporters, which mediate influx and efflux of THs, placental deiodinases D3 and D2, which control intraplacental TH levels, and TH-binding proteins (transthyretin), which provide transport roles in the placenta. This review discusses new information about mechanisms of transplacental delivery of T-4 to the fetus, providing insight into complex processes that are vitally important for normal fetal development

    Nitric oxide synthase type-II is synthesized by human gingival tissue and cultured human gingival fibroblasts

    No full text
    Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis

    Advances in hormonal therapies for hormone naïve and castration-resistant prostate cancers with or without previous chemotherapy

    Get PDF
    Hormonal manipulation plays a significant role in the treatment of advanced hormone naïve prostate cancer and castration-resistant prostate cancer (CRPC) with or without previous chemotherapy. Combination of gonadotropin releasing hormone (GnRH) agonists and androgen receptor (AR) antagonists (combined androgen blockade; CAB) is the first line therapy for advanced hormone naïve prostate cancer, but current strategies are developing novel GnRH antagonists to overcome disadvantages associated with GnRH agonist monotherapy and CAB in the clinical setting. Abiraterone acetate and enzalutamide are hormonal agents currently available for patients with CRPC and are both shown to improve overall survival versus placebo. Recently, in clinical trials, testosterone has been administered in cycles with existing surgical and chemical androgen deprivation therapies (ADT) (intermittent therapy) to CRPC patients of different stages (low risk, metastatic) to abate symptoms of testosterone deficiency and reduce cost of treatment from current hormonal therapies for patients with CRPC. This review will provide an overview on the therapeutic roles of hormonal manipulation in advanced hormone naïve and castration-resistant prostate cancers, as well as the development of novel hormonal therapies currently in preclinical and clinical trials

    Expression of extracellular matrix macromolecules around demineralized freeze-dried bone allografts

    No full text
    IN THE PRESENT STUDY HISTOCHEMICAL techniques were used to identify specific macromolecular components of the extracellular matrix associated with the tissue reaction to demineralized freeze-dried bone allografts (DFDBA) placed under barrier membranes for ridge augmentation. Small biopsies were obtained from tissues underneath the membranes at various times after placement of the DFDBA and processed for routine immunohistochemistry. Sections were stained with antibodies to osteocalcin, collagen type I, collagen type III, decorin, and biglycan. Non-immune serum, irrelevant antibodies, and omission of the primary antibodies served as negative controls. Histologic examination of the biopsies revealed allograft particles surrounded by well-formed fibrous connective tissue with little or no evidence of new bone formation. Vital autogenous bone fragments were present in the peripheral portions of the biopsies and served as positive controls for comparative purposes with the DFDBA particles. Only 7 out of the 20 biopsies studied were found to have any signs of bone formation around the DFDBA particles and in these such bone formation was irregular and inconsistent around the DFDBA particles. Around the periphery of the allograft particles, osteocalcin, collagen type I, collagen type III, decorin, and biglycan all showed relatively strong staining. Osteocalcin staining was also noted within the vital bone matrix but not in the surrounding fibrous connective tissue. Decorin, biglycan, collagen type I, and collagen type III were also found within the vital bone matrix. None of these antibodies stained the DFDBA particles. The unremarkable osteogenic response of the tissues to the DFDBA particles after healing periods of up to 12 months raises questions as to the predictability of these agents in inducing new bone

    Growth Hormone induces bone morphogenetic proteins and bone related proteins in the developing rat periodontium

    No full text
    The hypothesis that growth hormone (GH) up-regulates the expression of enzymes, matrix proteins, and differentiation markers involved in mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with GH over 5 days. The molar teeth and associated alveolar bone were processed for immunohistochemical demonstration of bone morphogenetic proteins 2 and 4 (BMP-2 and -4), bone morphogenetic protein type IA receptor (BMPR-IA), bone alkaline phosphatase (ALP), osteocalcin (OC), osteopontin (OPN), bone sialoprotein (BSP), and E11 protein (E11). The cementoblasts, osteoblasts, and periodontal ligament (PDL) cells responded to GH by expressing BMP-2 and -4, BMPR-IA, ALP, OC, and OPN and increasing the numbers of these cells. No changes were found in patterns of expression of the late differentiation markers BSP and E11 in response to GH. Thus, GH evokes expression of bone markers of early differentiation in cementoblasts, PDL cells, and osteoblasts of the periodontium. We propose that the induction of BMP-2 and -4 and their receptor by GH compliments the role of GH-induced insulin-like growth factor 1 (IGF-1) in promoting bone and tooth root formation

    Carrier-Mediated Thyroid Hormone Transport into Placenta by Placental Transthyretin

    No full text
    Context: The serum protein transthyretin (TTR) plays an important role in the transport of thyroid hormone and retinol, which are critical for normal development of the human fetus. TTR is not only synthesized and secreted into the circulation by the liver and other tissues but is also synthesized by placental trophoblasts, which separate the maternal and fetal circulations. Whether it is secreted or taken up by these cells and whether it carries thyroid hormone is unknown
    corecore