140 research outputs found

    The co-benefits of clean air and low-carbon policies on heavy metal emission reductions from coal-fired power plants in china

    Get PDF
    China has implemented a series of measures to address air pollutants and carbon emissions from coal-fired power plants, which can mitigate toxic heavy metal emissions simultaneously. By integrating plant-level information and energy activity data, we investigated the co-benefits of clean air and low-carbon policies by compiling a detailed inventory of historical heavy mental emissions (i.e., Hg, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, Zn, As, and Se) for China's coal-fired power plants during 2005–2020. Several scenarios were then designed to assess the evolution of heavy metal emissions for each coal-fired power plant with consideration given to the coal washing rate, air pollution control devices, operational hours and lifetime. The total emissions decreased from 12.9 thousand tons in 2005 to 8.8 thousand tons in 2020, which was mainly due to the widely installation of upgraded end-of-pipe devices and the decommissioning of small and emission-intensive plants, especially in Sichuan, Jiangsu and Zhejiang. Scenario analysis shows that reducing the operational lifetime to 20 years is the most effective measure to reduce national HM emissions, but the effects differ widely between regions. This study provides insights for the precise co-control of both heavy metals and carbon emissions, which is highly important for meeting the requirements of the Minamata Convention and carbon neutrality

    Global health effects of future atmospheric mercury emissions

    Get PDF
    Mercury is a potent neurotoxin that poses health risks to the global population. Anthropogenic mercury emissions to the atmosphere are projected to decrease in the future due to enhanced policy efforts such as the Minamata Convention, a legally-binding international treaty entered into force in 2017. Here, we report the development of a comprehensive climate-atmosphere-land-ocean-ecosystem and exposure-risk model framework for mercury and its application to project the health effects of future atmospheric emissions. Our results show that the accumulated health effects associated with mercury exposure during 2010–2050 are $19 (95% confidence interval: 4.7–54) trillion (2020 USD) realized to 2050 (3% discount rate) for the current policy scenario. Our results suggest a substantial increase in global human health cost if emission reduction actions are delayed. This comprehensive modeling approach provides a much-needed tool to help parties to evaluate the effectiveness of Hg emission controls as required by the Minamata Convention

    Dynamic distribution and expression in vivo of the human interferon gamma gene delivered by adenoviral vector

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously found that r-hu-IFNΞ³ exerts a potent anti-tumor effect on human nasopharyngeal carcinoma xenografts <it>in vivo</it>. Considering the fact that the clinical use of recombinant IFNΞ³ is limited by its short half-life and systemic side effects, we developed a recombinant adenovirus, Ad-IFNΞ³.</p> <p>Methods</p> <p>Dynamic distribution of the adenovirus vector and expression of IFNΞ³ were evaluated by Q-PCR and ELISA after intratumoral administration of Ad-IFNΞ³ into CNE-2 xenografts.</p> <p>Results</p> <p>Ad-IFNΞ³ DNA was mainly enriched in tumors where the Ad-IFNΞ³ DNA was injected (<it>P </it>< 0.05, compared to blood or parenchymal organs), as well as in livers (<it>P </it>< 0.05). Concentrations of Ad-IFNΞ³ DNA in other organs and blood were very low. Intratumoral Ad-IFNΞ³ DNA decreased sharply at high concentrations (9 Γ— 10<sup>5 </sup>copies/ΞΌg tissue DNA), and slowly at lower concentrations (1.7–2.9 Γ— 10<sup>5 </sup>copies/ΞΌg tissue DNA). IFNΞ³ was detected in the tumors and parenchymal organs. The concentration of IFNΞ³ was highest in the tumor (<it>P </it>< 0.05), followed by the liver and kidney (<it>P </it>< 0.05). High-level intratumoral expression of IFNΞ³ was maintained for at least 7 days, rapidly peaking on day 3 after injection of Ad-IFNΞ³ DNA.</p> <p>Conclusion</p> <p>An IFNΞ³ gene delivered by an adenoviral vector achieved high and consistent intratumoral expression. Disseminated Ad-IFNΞ³ DNA and the transgene product were mainly enriched in the liver.</p

    Unregulated miR-96 Induces Cell Proliferation in Human Breast Cancer by Downregulating Transcriptional Factor FOXO3a

    Get PDF
    FOXO transcription factors are key tumor suppressors in mammalian cells. Until now, suppression of FOXOs in cancer cells was thought to be mainly due to activation of multiple onco-kinases by a phosphorylation-ubiquitylation-mediated cascade. Therefore, it was speculated that inhibition of FOXO proteins would naturally occur through a multiple step post-translational process. However, whether cancer cells may downregulate FOXO protein via an alternative regulatory mechanism is unclear. In the current study, we report that expression of miR-96 was markedly upregulated in breast cancer cells and breast cancer tissues compared with normal breast epithelial cells (NBEC) and normal breast tissues. Ectopic expression of miR-96 induced the proliferation and anchorage-independent growth of breast cancer cells, while inhibition of miR-96 reduced this effect. Furthermore, upregulation of miR-96 in breast cancer cells resulted in modulation of their entry into the G1/S transitional phase, which was caused by downregulation of cyclin-dependent kinase (CDK) inhibitors, p27Kip1 and p21Cip1, and upregulation of the cell-cycle regulator cyclin D1. Moreover, we demonstrated that miR-96 downregulated FOXO3a expression by directly targeting the FOXO3a 3β€²-untranslated region. Taken together, our results suggest that miR-96 may play an important role in promoting proliferation of human breast cancer cells and present a novel mechanism of miRNA-mediated direct suppression of FOXO3a expression in cancer cells

    Characterization of the Autocrine/Paracrine Function of Vitamin D in Human Gingival Fibroblasts and Periodontal Ligament Cells

    Get PDF
    Background: We previously demonstrated that 25-hydroxyvitamin D-3, the precursor of 1 alpha,25-dihydroxyvitamin D-3, is abundant around periodontal soft tissues. Here we investigate whether 25-hydroxyvitamin D-3 is converted to 1 alpha,25-dihydroxyvitamin D-3 in periodontal soft tissue cells and explore the possibility of an autocrine/paracrine function of 1 alpha,25-dihydroxyvitamin D-3 in periodontal soft tissue cells. Methodology/Principal Findings: We established primary cultures of human gingival fibroblasts and human periodontal ligament cells from 5 individual donors. We demonstrated that 1 alpha-hydroxylase was expressed in human gingival fibroblasts and periodontal ligament cells, as was cubilin. After incubation with the 1 alpha-hydroxylase substrate 25-hydroxyvitamin D-3, human gingival fibroblasts and periodontal ligament cells generated detectable 1 alpha,25-dihydroxyvitamin D-3 that resulted in an up-regulation of CYP24A1 and RANKL mRNA. A specific knockdown of 1 alpha-hydroxylase in human gingival fibroblasts and periodontal ligament cells using siRNA resulted in a significant reduction in both 1 alpha, 25-dihydroxyvitamin D-3 production and mRNA expression of CYP24A1 and RANKL. The classical renal regulators of 1 alpha-hydroxylase (parathyroid hormone, calcium and 1 alpha,25-dihydroxyvitamin D-3) and Porphyromonas gingivalis lipopolysaccharide did not influence 1 alpha-hydroxylase expression significantly, however, interleukin-1 beta and sodium butyrate strongly induced 1 alpha-hydroxylase expression in human gingival fibroblasts and periodontal ligament cells. Conclusions/Significance: In this study, the expression, activity and functionality of 1 alpha-hydroxylase were detected in human gingival fibroblasts and periodontal ligament cells, raising the possibility that vitamin D acts in an autocrine/paracrine manner in these cells.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000305781700070&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Multidisciplinary SciencesSCI(E)PubMed13ARTICLE6e39878

    Genome Characterization of the Oleaginous Fungus Mortierella alpina

    Get PDF
    Mortierella alpina is an oleaginous fungus which can produce lipids accounting for up to 50% of its dry weight in the form of triacylglycerols. It is used commercially for the production of arachidonic acid. Using a combination of high throughput sequencing and lipid profiling, we have assembled the M. alpina genome, mapped its lipogenesis pathway and determined its major lipid species. The 38.38 Mb M. alpina genome shows a high degree of gene duplications. Approximately 50% of its 12,796 gene models, and 60% of genes in the predicted lipogenesis pathway, belong to multigene families. Notably, M. alpina has 18 lipase genes, of which 11 contain the class 2 lipase domain and may share a similar function. M. alpina's fatty acid synthase is a single polypeptide containing all of the catalytic domains required for fatty acid synthesis from acetyl-CoA and malonyl-CoA, whereas in many fungi this enzyme is comprised of two polypeptides. Major lipids were profiled to confirm the products predicted in the lipogenesis pathway. M. alpina produces a complex mixture of glycerolipids, glycerophospholipids and sphingolipids. In contrast, only two major sterol lipids, desmosterol and 24(28)-methylene-cholesterol, were detected. Phylogenetic analysis based on genes involved in lipid metabolism suggests that oleaginous fungi may have acquired their lipogenic capacity during evolution after the divergence of Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. Our study provides the first draft genome and comprehensive lipid profile for M. alpina, and lays the foundation for possible genetic engineering of M. alpina to produce higher levels and diverse contents of dietary lipids
    • …
    corecore