410 research outputs found

    Impact of cationic host defence peptide LL-37 on human neutrophil death and inflammatory responses

    Get PDF
    Cathelicidins are cationic host defence peptides (CHDP) with essential roles in the innate defence system. These peptides have antimicrobial potential and the capacity to modulate innate immunity and inflammatory processes. Neutrophils (PMN) are the main reservoir of cathelicidins and play key roles in first line defence against infection. The appropriate regulation of PMN function, death, and clearance is critical to innate immunity, and the efferocytosis of apoptotic PMN, in contrast to necrotic cells, is proposed to promote the resolution of inflammation. In this thesis I demonstrate that the human cathelicidin LL-37 rapidly induced secondary necrosis of apoptotic human PMN and identify the essential C-terminal region of LL-37 required for this activity. In addition to the induction of secondary necrosis, higher concentrations of LL-37 also promoted PMN granule contents release. LL-37-induced secondary necrosis did not affect PMN ingestion by human monocyte-derived macrophages and, in contrast to expectation, was not proinflammatory. Interestingly, the anti-inflammatory effects of apoptotic PMN on activated macrophages were retained and even potentiated where LL-37-mediated secondary necrosis induced anti-inflammatory granule content release. Consistent with the results of in vitro studies, in vivo murine sterile peritonitis model revealed the same phenomenon: LL-37-induced secondary necrosis diminished inflammatory responses with decreased PMN influx. I also present data on LL-37- mediated modulation of innate immune effector cell cytokines responses to inflammatory signals. I propose that during acute inflammation LL-37 can modulate innate immune responses through its activity on cytokine production, and that LL-37-mediated secondary necrosis of apoptotic PMN has anti-inflammatory effects, but may also mediate host damage by promoting the release of potentially harmful intracellular contents under chronic or dysregulated conditions

    Tet oncogene family member 2 gene alterations in childhood acute myeloid leukemia

    Get PDF
    Background/PurposeMutations in the tet oncogene family member 2 gene (TET2) are frequently found in adult patients with acute myeloid leukemia (AML). Reports of TET2 mutations in children are limited. We assessed the prevalence of TET2 mutations in Taiwanese children with AML and analyzed their prognosis.MethodsBetween 1997 and 2010, a total of 69 consecutive children with AML were enrolled at the National Taiwan University Hospital. The analysis for TET2 mutations was performed using direct sequencing. Clinical characteristics and overall survival (OS) were compared between patients with and without TET2 alterations.ResultsIntronic and missense mutations were identified. No nonsense or frameshift mutations were observed. Two putative disease-causing missense mutations (S609C and A1865G) were identified in one patient. We estimated the prevalence of TET2 mutations in the current patient population to be 1.4%. The most common polymorphism was I1762V (45%), followed by V218M (12%), P29R (6%), and F868L (6%). Patients with polymorphism I1762V had an increased 10-year survival rate compared with patients without I1762V (48.4% vs. 25.7%, p = 0.049) by Chi-square test; OS was not different when examined using the Kaplan–Meier method (p = 0.104).ConclusionThe prevalence of TET2 mutations in children with AML compared with adults with AML was lower and less complex. Patient prognosis associated with TET2 mutations in children requires further investigation

    Secondary necrosis of apoptotic neutrophils induced by the human cathelicidin LL-37 is not proinflammatory to phagocytosing macrophages

    Get PDF
    Cathelicidins are CHDP with essential roles in innate host defense but also more recently associated with the pathogenesis of certain chronic diseases. These peptides have microbicidal potential and the capacity to modulate innate immunity and inflammatory processes. PMN are key innate immune effector cells with pivotal roles in defense against infection. The appropriate regulation of PMN function, death, and clearance is critical to innate immunity, and dysregulation is implicated in disease pathogenesis. The efferocytosis of apoptotic PMN, in contrast to necrotic cells, is proposed to promote the resolution of inflammation. We demonstrate that the human cathelicidin LL-37 induced rapid secondary necrosis of apoptotic human PMN and identify an essential minimal region of LL-37 required for this activity. Using these LL-37-induced secondary necrotic PMN, we characterize the consequence for macrophage inflammatory responses. LL-37-induced secondary necrosis did not inhibit PMN ingestion by monocyte-derived macrophages and in contrast to expectation, was not proinflammatory. Furthermore, the anti-inflammatory effects of apoptotic PMN on activated macrophages were retained and even potentiated after LL-37-induced secondary necrosis. However, this process of secondary necrosis did induce the release of potentially harmful PMN granule contents. Thus, we suggest that LL-37 can be a potent inducer of PMN secondary necrosis during inflammation without promoting macrophage inflammation but may mediate host damage through PMN granule content release under chronic or dysregulated conditions

    Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure

    Full text link
    Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferromagnets. However, in contrast to Berry curvature, the quantum metric has rarely been explored. Here, we report a new nonlinear Hall effect induced by quantum metric by interfacing even-layered MnBi2Te4 (a PT-symmetric antiferromagnet (AFM)) with black phosphorus. This novel nonlinear Hall effect switches direction upon reversing the AFM spins and exhibits distinct scaling that suggests a non-dissipative nature. Like the AHE brought Berry curvature under the spotlight, our results open the door to discovering quantum metric responses. Moreover, we demonstrate that the AFM can harvest wireless electromagnetic energy via the new nonlinear Hall effect, therefore enabling intriguing applications that bridges nonlinear electronics with AFM spintronics.Comment: 19 pages, 4 figures and a Supplementary Materials with 66 pages, 4 figures and 3 tables. Originally submitted to Science on Oct. 5, 202

    Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy

    Get PDF
    Cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB) and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa). However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR). In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1) expression and the inhibition of acidic vesicular organelle (AVO) formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa

    Cathelicidin is a “fire alarm”, generating protective NLRP3-dependent airway epithelial cell inflammatory responses during infection with Pseudomonas aeruginosa

    Get PDF
    <div><p>Pulmonary infections are a major global cause of morbidity, exacerbated by an increasing threat from antibiotic-resistant pathogens. In this context, therapeutic interventions aimed at protectively modulating host responses, to enhance defence against infection, take on ever greater significance. <i>Pseudomonas aeruginosa</i> is an important multidrug-resistant, opportunistic respiratory pathogen, the clearance of which can be enhanced <i>in vivo</i> by the innate immune modulatory properties of antimicrobial host defence peptides from the cathelicidin family, including human LL-37. Initially described primarily as bactericidal agents, cathelicidins are now recognised as multifunctional antimicrobial immunomodulators, modifying host responses to pathogens, but the key mechanisms involved in these protective functions are not yet defined. We demonstrate that <i>P</i>. <i>aeruginosa</i> infection of airway epithelial cells promotes extensive infected cell internalisation of LL-37, in a manner that is dependent upon epithelial cell interaction with live bacteria, but does not require bacterial Type 3 Secretion System (T3SS). Internalised LL-37 acts as a second signal to induce inflammasome activation in airway epithelial cells, which, in contrast to myeloid cells, are relatively unresponsive to <i>P</i>. <i>aeruginosa</i>. We demonstrate that this is mechanistically dependent upon cathepsin B release, and NLRP3-dependent activation of caspase 1. These result in LL-37-mediated release of IL-1β and IL-18 in a manner that is synergistic with <i>P</i>. <i>aeruginosa</i> infection, and can induce caspase 1-dependent death of infected epithelial cells, and promote neutrophil chemotaxis. We propose that cathelicidin can therefore act as a second signal, required by <i>P</i>. <i>aeruginosa</i> infected epithelial cells to promote an inflammasome-mediated altruistic cell death of infection-compromised epithelial cells and act as a “fire alarm” to enhance rapid escalation of protective inflammatory responses to an uncontrolled infection. Understanding this novel modulatory role for cathelicidins, has the potential to inform development of novel therapeutic strategies to antibiotic-resistant pathogens, harnessing innate immunity as a complementation or alternative to current interventions.</p></div

    A Nationwide Population-Based Cohort Study: Will Anxiety Disorders Increase Subsequent Cancer Risk?

    Get PDF
    BACKGROUND: The aim of this study was to evaluate a possible association between malignancy and anxiety disorders (AD) in Taiwan. METHODS: We employed data from the National Health Insurance system of Taiwan. The AD cohort contained 24,066 patients with each patient randomly frequency matched according to age and sex with 4 individuals from the general population without AD. Cox's proportional hazard regression analysis was conducted to estimate the influence of AD on the risk of cancer. RESULTS: Among patients with AD, the overall risk of developing cancer was only 1% higher than among subjects without AD, and the difference was not significant (hazard ratio [HR] = 1.01, 95% confidence interval [95% CI] = 0.95-1.07). With regard to individual types of cancer, the risk of developing prostate cancer among male patients with AD was significantly higher (HR = 1.32, 95% CI = 1.02-1.71). On the other hand, the risk of cervical cancer among female patients with AD was marginally significantly lower than among female subjects without AD (HR = 0.72, 95% CI = 0.51-1.03). LIMITATIONS: One major limitation is the lack of information regarding the life style or behavior of patients in the NHI database, such as smoking and alcohol consumption. CONCLUSIONS: Despite the failure to identify a relationship between AD and the overall risk of cancer, we found that Taiwanese patients with AD had a higher risk of developing prostate cancer and a lower risk of developing cervical cancer

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take

    Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metformin protection against cancer risk in Orientals is uncertain. We examined the possible metformin effect on total, esophageal, gastric, colorectal (CRC), hepatocellular (HCC) and pancreatic cancers in a Taiwanese cohort.</p> <p>Methods</p> <p>A representative sample of 800,000 was drawn from the Taiwanese National Health Insurance data of 2000. A cohort of 480,984 participants 20 years or older, diabetes-cancer-free on 1st January 2000 was formed and categorized as four groups by DM and metformin usage status. Eligible incident cancer events had to occur one year after the index date until the end of 2007. The Cox proportional-hazards model evaluated relative risk of cancer for treated DM patients with or without metformin. The covariates included age, gender, other oral anti-hyperglycemic medication, Charlson comorbidity index (CCI) score and metformin exposure dosage and duration.</p> <p>Results</p> <p>With diabetes but no anti-hyperglycemic medication, cancer incidence density increased at least 2-fold for total, CRC and HCC. On metformin, total, CRC and HCC incidences decreased to near non-diabetic levels but to varying degrees depending on gender and cancer type (CRC in women, liver in men). Adjustment for other oral anti-hyperglycemic agents usage and CCI made the benefit of metformin more evident [hazard ratios (95% confidence intervals): total 0.12 (0.08-0.19), CRC 0.36 (0.13-0.98), liver 0.06 (0.02-0.16), pancreas 0.15 (0.03-0.79)]. There was a significant gender interaction with metformin in CRC which favored women. Metformin dosage for a significant decrease in cancer incidence was ≤500 mg/day.</p> <p>Conclusions</p> <p>Metformin can reduce the incidences of several gastroenterological cancers in treated diabetes.</p
    corecore