12,418 research outputs found
Properties of the scalar mesons , and
In the three-state mixing framework, considering the possible glueball
components of and , we investigate the hadronic decays of
, and into two pseudoscalar mesons. The
quarkonia-glueball content of the three states is determined from the fit to
the new data presented by the WA102 Collaboration. We find that these data are
insensitive to the possible glueball components of and .
Furthermore, we discuss some properties of the mass matrix describing the
mixing of the isoscalar scalar mesons.Comment: Latex 14 pages including 1 eps figur
Spectral and optical properties in the antiphase stripe phase of the cuprate superconductors
We investigate the superconducting order parameter, the spectral and optical
properties in a stripe model with spin (charge) domain-derived scattering
potential (). We show that the charge domain-derived scattering
is less effective than the spin scattering on the suppression of
superconductivity. For , the spectral weight concentrates on
the () antinodal region, and a finite energy peak appears in the optical
conductivity with the disappearance of the Drude peak. But for , the spectral weight concentrates on the () nodal region,
and a residual Drude peak exists in the optical conductivity without the finite
energy peak. These results consistently account for the divergent observations
in the ARPES and optical conductivity experiments in several high-
cuprates, and suggest that the "insulating" and "metallic" properties are
intrinsic to the stripe state, depending on the relative strength of the spin
and charge domain-derived scattering potentials.Comment: 7 pages, 4 figure
Coexistence of the antiferromagnetic and superconducting order and its effect on spin dynamics in electron-doped high- cuprates
In the framework of the slave-boson approach to the model, it is
found that for electron-doped high- cuprates, the staggered
antiferromagnetic (AF) order coexists with superconducting (SC) order in a wide
doping level ranged from underdoped to nearly optimal doping at the mean-field
level. In the coexisting phase, it is revealed that the spin response is
commensurate in a substantial frequency range below a crossover frequency
for all dopings considered, and it switches to the incommensurate
structure when the frequency is higher than . This result is in
agreement with the experimental measurements. Comparison of the spin response
between the coexisting phase and the pure SC phase with a
-wave pairing plus a higher harmonics term (DP+HH) suggests
that the inclusion of the two-band effect is important to consistently account
for both the dispersion of the spin response and the non-monotonic gap behavior
in the electron-doped cuprates.Comment: 6 pages, 5 figure
- β¦