32 research outputs found

    Observation of entanglement negativity transition of pseudo-random mixed states

    Full text link
    Multipartite entanglement is a key resource for quantum computation. It is expected theoretically that entanglement transition may happen for multipartite random quantum states, however, which is still absent experimentally. Here, we report the observation of entanglement transition quantified by negativity using a fully connected 20-qubit superconducting processor. We implement multi-layer pseudo-random circuits to generate pseudo-random pure states of 7 to 15 qubits. Then, we investigate negativity spectra of reduced density matrices obtained by quantum state tomography for 6 qubits.Three different phases can be identified by calculating logarithmic negativities based on the negativity spectra. We observe the phase transitions by changing the sizes of environment and subsystems. The randomness of our circuits can be also characterized by quantifying the distance between the distribution of output bit-string probabilities and Porter-Thomas distribution. Our simulator provides a powerful tool to generate random states and understand the entanglement structure for multipartite quantum systems

    Revealing inherent quantum interference and entanglement of a Dirac Fermion

    Full text link
    The Dirac equation is critical to understanding the universe, and plays an important role in technological advancements. Compared to the stationary solution, the dynamical evolution under the Dirac Hamiltonian is less understood, exemplified by Zitterbewegung. Although originally predicted in relativistic quantum mechanics, Zitterbewegung can also appear in some classical systems, which leads to the important question of whether Zitterbewegung of Dirac Fermions is underlain by a more fundamental and universal interference behavior without classical analogs. We here reveal such an interference pattern in phase space, which underlies but goes beyond Zitterbewegung, and whose nonclassicality is manifested by the negativity of the phase-space quasiprobability distribution, and the associated pseudospin-momentum entanglement. We confirm this discovery by numerical simulation and an on-chip experiment, where a superconducting qubit and a quantized microwave field respectively emulate the internal and external degrees of freedom of a Dirac particle. The measured quasiprobability negativities well agree with the numerical simulation. Besides being of fundamental importance, the demonstrated nonclassical effects are useful in quantum technology.Comment: 18 pages, 15 figure
    corecore