291,035 research outputs found

    Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model

    Full text link
    Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Li et al., Phys. Rev. E. 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that the interface thickness is approximately proportional to 1/sqrt(a). Using a smaller a will lead to a wider interface thickness, which can reduce the spurious currents and enhance the numerical stability of the pseudopotential model at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential model by increasing the kinematic viscosity ratio between the vapor and liquid phases. The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation. Using the improved model as well as the above treatments, numerical simulations of droplet splashing on a thin liquid film are conducted at a density ratio in excess of 500 with Reynolds numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly reproduced and the predicted spread radius is found to obey the power law reported in the literature.Comment: 9 figures, 2 tables, accepted by Physical Review E (in press

    On quantum vertex algebras and their modules

    Full text link
    We give a survey on the developments in a certain theory of quantum vertex algebras, including a conceptual construction of quantum vertex algebras and their modules and a connection of double Yangians and Zamolodchikov-Faddeev algebras with quantum vertex algebras.Comment: 18 pages; contribution to the proceedings of the conference in honor of Professor Geoffrey Maso

    Measurement-induced entanglement of two superconducting qubits

    Full text link
    We study the problem of two superconducting quantum qubits coupled via a resonator. If only one quanta is present in the system and the number of photons in the resonator is measured with a null result, the qubits end up in an entangled Bell state. Here we look at one source of errors in this quantum nondemolition scheme due to the presence of more than one quanta in the resonator, previous to the measurement. By analyzing the structure of the conditional Hamiltonian with arbitrary number of quanta, we show that the scheme is remarkably robust against these type of errors.Comment: 4 pages, 2 figure

    Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole

    Get PDF
    In this paper, we extend Parikh' work to the non-stationary black hole. As an example of the non-stationary black hole, we study the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. We find that the result is different from Parikh's work because drHdv\frac{dr_{H}}{dv} is the function of Bondi mass m(v)
    • ā€¦
    corecore