90 research outputs found

    17ÎČ-Estradiol Enhances the Response of Plasmacytoid Dendritic Cell to CpG

    Get PDF
    Gender differences in immune capabilities suggest that sex hormones such as estrogens were involved in the regulation of the immunocompetence. Numerous studies also suggest that plasmacytoid dendritic cells (PDCs) play a pathogenic role in SLE. However, it is unclear whether estrogen can modulate the function of PDCs to influence the development of SLE. In the present study, PDCs from murine spleens were treated with 17ÎČ-estradiol (E2) and CpG respectively or both in vitro, then cell viability, costimulatory molecule expression, cytokine secretion of PDCs, as well as stimulatory capacity of PDCs to B cells were analyzed. Results showed that E2 and CpG increased the cell viability and costimulatory molecule expression on PDCs synergistically. Moreover, the intracellular and extracellular secretion of IFN-α was increased by E2 or E2 plus CpG. In addition, E2 and CpG also increased the stimulatory capacity of PDCs to B cells, and the viability of B cells was decreased after neutralizing IFN-α significantly. In the experiments in vivo, mice received daily s.c. injections of E2 and CpG respectively or both, then we found that the plasma concentration of IgM were elevated by E2 and CpG synergistically and the expression of IFN-α/ÎČ in spleens were noticeably increased by CpG plus E2 compared with the treatment of E2 or CpG only. This study indicates that E2 could exacerbate PDCs' activation with CpG, which further activates B cells to upregulate susceptibility to autoantigens. IFN-α plays an important role in the stimulatory effect of PDCs on B cells. E2 stimulation of IFN-α production may result in female prevalence in autoimmune diseases such as SLE through activation of PDCs. This study provides novel evidence of relationship between estrogen and SLE and also sheds light on gender biases among SLE patients

    Willingness of Chinese Men Who Have Sex With Men to Use Smartphone-Based Electronic Readers for HIV Self-testing: Web-Based Cross-sectional Study

    Get PDF
    BACKGROUND: The need for strategies to encourage user-initiated reporting of results after HIV self-testing (HIVST) persists. Smartphone-based electronic readers (SERs) have been shown capable of reading diagnostics results accurately in point-of-care diagnostics and could bridge the current gaps between HIVST and linkage to care. OBJECTIVE: Our study aimed to assess the willingness of Chinese men who have sex with men (MSM) in the Jiangsu province to use an SER for HIVST through a web-based cross-sectional study. METHODS: From February to April 2020, we conducted a convenience web-based survey among Chinese MSM by using a pretested structured questionnaire. Survey items were adapted from previous HIVST feasibility studies and modified as required. Prior to answering reader-related questions, participants watched a video showcasing a prototype SER. Statistical analysis included descriptive analysis, chi-squared test, and multivariable logistic regression. P values less than .05 were deemed statistically significant. RESULTS: Of 692 participants, 369 (53.3%) were aged 26-40 years, 456 (65.9%) had ever self-tested for HIV, and 493 (71.2%) were willing to use an SER for HIVST. Approximately 98% (483/493) of the willing participants, 85.3% (459/538) of ever self-tested and never self-tested, and 40% (46/115) of unwilling participants reported that SERs would increase their HIVST frequency. Engaging in unprotected anal intercourse with regular partners compared to consistently using condoms (adjusted odds ratio [AOR] 3.04, 95% CI 1.19-7.74) increased the odds of willingness to use an SER for HIVST. Participants who had ever considered HIVST at home with a partner right before sex compared to those who had not (AOR 2.99, 95% CI 1.13-7.90) were also more willing to use an SER for HIVST. Playing receptive roles during anal intercourse compared to playing insertive roles (AOR 0.05, 95% CI 0.02-0.14) was associated with decreased odds of being willing to use an SER for HIVST. The majority of the participants (447/608, 73.5%) preferred to purchase readers from local Centers of Disease Control and Prevention offices and 51.2% (311/608) of the participants were willing to pay less than US $4.70 for a reader device. CONCLUSIONS: The majority of the Chinese MSM, especially those with high sexual risk behaviors, were willing to use an SER for HIVST. Many MSM were also willing to self-test more frequently for HIV with an SER. Further research is needed to ascertain the diagnostic and real-time data-capturing capacity of prototype SERs during HIVST

    Collaborative Optimization of Post-Disaster Damage Repair and Power System Operation

    No full text
    After disasters, enhancing the resilience of power systems and restoring power systems rapidly can effectively reduce the economy damage and bad social impacts. Reasonable post-disaster restoration strategies are the most critical part of power system restoration work. This paper co-optimizes post-disaster damage repair and power system operation together to formulate the optimal repair route, the unit output and transmission switching plan. The power outage loss will be minimized, with possible small expense of damage repair and power system operation cost. The co-optimization model is formulated as a mixed integer second order cone program (MISOCP), while the AC-power-flow model, the complex power system restoration constraints and the changing processes of component available states are synthetically considered to make the model more realistic. Lagrange relaxation (LR) decomposes the model into the damage repair routing sub problem and the power system operation sub problem, which can be solved iteratively. An acceleration strategy is used to improve the solving efficiency. The proposed model and algorithm are validated by the IEEE 57-bus test system and the results indicate that the proposed model can realize the enhancement of resilience and the economic restoration of post-disaster power systems

    Quantitative Resilience Assessment under a Tri-Stage Framework for Power Systems

    No full text
    The frequent occurrence of natural disasters and malicious attacks has exerted unprecedented disturbances on power systems, accounting for the extensive attention paid to power system resilience. Combined with the evolving nature of general disasters, this paper proposes resilience assessment approaches for power systems under a tri-stage framework. The pre-disaster toughness is proposed to quantify the robustness of power systems against potential disasters, where the thinking of area division and partitioned multi-objective risk method (PMRM) is introduced. In the case of information deficiency caused by disasters, the during-disaster resistance to disturbance is calculated to reflect the real-time system running state by state estimation (SE). The post-disaster restoration ability consists of response ability, restoration efficiency and restoration economy, which is evaluated by Sequential Monte-Carlo Simulation to simulate the system restoration process. Further, a synthetic metric system is presented to quantify the resilience performance of power systems from the above three aspects. The proposed approaches and framework are validated on the IEEE RTS 79 system, and helpful conclusions are drawn from extensive case studies

    Correlation Characteristic Analysis for Wind Speed in Different Geographical Hierarchies

    No full text
    As the scale of wind power bases rises, it becomes significant in power system planning and operation to provide detailed correlation characteristic of wind speed in different geographical hierarchies, that is among wind turbines, within a wind farm and its regional wind turbines, and among different wind farms. A new approach to analyze the correlation characteristics of wind speed in different geographical hierarchies is proposed in this paper. In the proposed approach, either linear or nonlinear correlation of wind speed in each geographical hierarchy is firstly identified. Then joint sectionalized wind speed probability distribution is modeled for linear correlation analysis while a Copula function is adopted in nonlinear correlation analysis. By this approach, temporal-geographical correlations of wind speed in different geographical hierarchies are properly revealed. Results of case studies based on Jiuquan Wind Power Base in China are analyzed in each geographical hierarchy, which illustrates the feasibility of the proposed approach

    The integrated reliability evaluation of distribution system considering the system voltages adjustment

    No full text
    In modern society, with the development of electricity grids, besides the power supply continuity and stability, more attention are paid on the system voltage level and voltage parameters. Therefore, traditional reliability evaluation method with only some those reliability indexes cannot meet the situation and voltage attribute parameters and current power losses also need be calculated at the same time, which can prove a more comprehensive estimation for distribution system. Based on related researches from domestic and overseas, this paper is to find an efficient, feasible and flexible integrated reliability evaluation of distribution network. In this paper, a distribution reliability evaluation model is established in Matlab as a platform, using the Sequential Monte Carlo Simulation method to simulate elements' faults more accurately. This model includes the adjustment of nodes voltages in system, by the means of reactive power compensation and optimization using the Particle Swarm Optimization (OPS) algorithm. When the OPS is be used to solve optimization problem, power flow need to be calculated repeatedly, so the tool, Open DSS, is chosen to solve power flow calculation fast. In addition, the interface between Open DSS and Matlab is designed for Matlab invoking Open DSS which will make iteration faster. Finally, a series of improved reliability integrated evaluation indexes are defined. Combined reliability indexes, SAIFI, CAIDI, CAIFI, EENS, ASAI, with power quality indexes such as system voltage eligibility rate, voltage offset, power loss rate and other indicators to form a new reliability evaluation index system of distribution system. Taking the improved PG&E 69 node system as an example, use the model and algorithm proposed in this paper to evaluate reliability of this system

    Efficient CO₂ electroreduction to ethanol by Cu₃Sn catalyst

    No full text
    Electrochemical carbon dioxide reduction to ethanol suggests a potential strategy to reduce the CO2 level and generate valuable liquid fuels, while the development of low-cost catalysts with high activity and selectivity remains a major challenge. In this work, a bimetallic, low-entropy state Cu3 Sn catalyst featuring efficient electrocatalytic CO2  reduction to ethanol is developed. This low-entropy state Cu3 Sn catalyst allows a high Faradaic efficiency of 64% for ethanol production, distinctively from the high-entropy state Cu6 Sn5  catalyst with the main selectivity toward producing formate. At an industry-level current density of -900 mA cm-2 , the Cu3 Sn catalyst exhibited excellent stability for over 48 h in a membrane-electrode based electrolyzer. Theoretical calculations indicate that the high ethanol selectivity on Cu3 Sn is attributed to its enhanced adsorption of several key intermediates in the ethanol production pathway. Moreover, the life-cycle assessment reveals that using the Cu3 Sn electrocatalyst, an electrochemical CO2 -to-ethanol electrolysis system powered by wind electricity can lead to a global warming potential of 120 kgCO2-eq for producing 1 ton of ethanol, corresponding to a 55% reduction of carbon emissions compared to the conventional bio-ethanol process.National Supercomputing Centre (NSCC) SingaporeSubmitted/Accepted versionThe authors thank the following funding agencies for supporting this work: the National Key Research and Development Program of China (2018YFA0209401, 2017YFA0206901), the National Science Foundation of China (22025502, 21975051, 21773036), the Science and Technology Commission of Shanghai Municipality (21DZ1206800, 19XD1420400), and the Shanghai Municipal Education Commission (2019-01-07-00-07-E00045). The authors acknowledge financial support from the Academic Research Fund Tier 1 (RG8/20) and computing resources from the National Supercomputing Centre Singapore

    Resilience assessment of active distribution systems considering microgrid formation based on grid‐edge DERs

    No full text
    Abstract Distributed energy resources (DERs) provide flexible load restoration strategies, which can effectively enhance the resilience of active distribution systems (ADSs). Whereas, the widespread DERs in ADSs complicates the supply‐demand relationship and make the system resilience difficult to access. Therefore, this paper proposes a simulation‐based resilience assessment algorithm of ADSs considering the microgrid formation based on grid‐edge DERs. Microgrid formation is used to depict the resilience gain of grid‐edge DERs on ADSs. Specifically, a resilience assessment framework for ADSs is firstly proposed, where the uncertainty of component state and supply‐demand is modelled based on probability statistics. Then the mixed integer linear programming is used to search for optimal load restoration strategies with microgrid formation. On this basis, a set of resilience indices are defined to quantitatively analyse the resilience of ADSs, and a resilience assessment algorithm with uncertainty scenario generation is proposed to obtain these indices. Furthermore, extensive numerical results based on a modified IEEE 123‐bus feeder validate the effectiveness of the proposed method
    • 

    corecore