10,749 research outputs found
Electrically driven spin resonance in a bent disordered carbon nanotube
Resonant manipulation of carbon nanotube valley-spin qubits by an electric
field is investigated theoretically. We develop a new analysis of electrically
driven spin resonance exploiting fixed physical characteristics of the
nanotube: a bend and inhomogeneous disorder. The spectrum is simulated for an
electron valley-spin qubit coupled to a hole valley-spin qubit and an impurity
electron spin, and features that coincide with a recent measurement are
identified. We show that the same mechanism allows resonant control of the full
four-dimensional spin-valley space.Comment: 11 pages, 7 figure
Fundamentals of Heterogeneous Cellular Networks with Energy Harvesting
We develop a new tractable model for K-tier heterogeneous cellular networks
(HetNets), where each base station (BS) is powered solely by a self-contained
energy harvesting module. The BSs across tiers differ in terms of the energy
harvesting rate, energy storage capacity, transmit power and deployment
density. Since a BS may not always have enough energy, it may need to be kept
OFF and allowed to recharge while nearby users are served by neighboring BSs
that are ON. We show that the fraction of time a k^{th} tier BS can be kept ON,
termed availability \rho_k, is a fundamental metric of interest. Using tools
from random walk theory, fixed point analysis and stochastic geometry, we
characterize the set of K-tuples (\rho_1, \rho_2, ... \rho_K), termed the
availability region, that is achievable by general uncoordinated operational
strategies, where the decision to toggle the current ON/OFF state of a BS is
taken independently of the other BSs. If the availability vector corresponding
to the optimal system performance, e.g., in terms of rate, lies in this
availability region, there is no performance loss due to the presence of
unreliable energy sources. As a part of our analysis, we model the temporal
dynamics of the energy level at each BS as a birth-death process, derive the
energy utilization rate, and use hitting/stopping time analysis to prove that
there exists a fundamental limit on \rho_k that cannot be surpassed by any
uncoordinated strategy.Comment: submitted to IEEE Transactions on Wireless Communications, July 201
Density-dependent deformed relativistic Hartree-Bogoliubov theory in continuum
The deformed relativistic Hartree-Bogoliubov theory in continuum with the
density-dependent meson-nucleon couplings is developed. The formulism is
briefly presented with the emphasis on handling the density-dependent
couplings, meson fields, and potentials in axially deformed system with partial
wave method. Taking the neutron-rich nucleus Mg as an example, the newly
developed code is verified by the spherical relativistic continuum
Hartree-Bogoliubov calculations, where only the spherical components of the
densities are considered. When the deformation is included self-consistently,
it is shown that the spherical components of density-dependent coupling
strengths are dominant, while the contributions from low-order deformed
components are not negligible.Comment: 5 pages, 3 figures, and 1 tabl
Cryptic diversity in Tranzscheliella spp. (Ustilaginales) is driven by host switches
Species of Tranzscheliella have been reported as pathogens of more than 30 genera of grasses (Poaceae). In this study, a combined morphological and molecular phylogenetic approach was used to examine 33 specimens provisionally identified as belonging to the T. hypodytes species complex. The phylogenetic analysis resolved several well-supported clades that corresponded to known and novel species of Tranzscheliella. Four new species are described and illustrated. In addition, a new combination in Tranzscheliella is proposed for Sorosporium reverdattoanum. Cophylogenetic analyses assessed by distance-based and event-cost based methods, indicated host switches are likely the prominent force driving speciation in Tranzscheliella
- …