4 research outputs found

    Application of Heterogeneous Catalysts in Dechlorination of Chlorophenols

    Get PDF
    Chlorophenols (CPs) is a very important kind of basic organic chemical intermediates such as sanitizers, germicides, insecticides and so on; but CPs also constitutes a particular group of priority pollutants that widely distribute in wastewater and the polluted groundwater. Because of their acute toxicity, persistence and low biodegradability, their emissions have been progressively restricted by strong legal regulations. In this chapter, we focused on methods for degrading of CPs recent years, especially by using new heterogeneous catalytic hydrogenation methods to the dechlorination of CPs. The purpose is to introduce scientific research workers and companies to waste water treatments in order to inspire and further better protect the environment

    Fluorescent Composites Prepared of Tb<sup>3+</sup> and Sulfonated Sulfate Polymer Constructed through Post-Sulfonation Sulfur-Fluorine Exchange Polymerization by Symmetric Molecular

    No full text
    Organic fluorescent materials are widely applied in different important fields, such as light-emitting display, explosive detection, molecular imprinting, and so on, because of their low cost, easy functionalization, and large-scale fabrication. In this work, we designed and synthesized a new kind of organic fluorescent polysulfate composite material through post-sulfonation sulfur-fluorine exchange polymerization (a new kind of click chemistry) by symmetric molecular. Sulfur-fluorine exchange polymerization: symmetrical structure SO2F−R1−SO2F molecular reacted with symmetrical OH−R2−OH molecular through nucleophilic reaction in the presence of inorganic base. The polysulfate material was further modified by ClSO3H to get PSE−SO3H materials. Tb3+ was highly dispersed on PSE−SO3H to afford organic-inorganic hybrid fluorescent materials through the conventional coordination chemistry method. The emission wavelength of the organic-inorganic hybrid fluorescent polymer PSE−SO3H−Tb3+ was between 475 and 685 nm, the quantum yield reached 1.18%, and fluorescence lifetime lasted for 730.168 us, with the pure green light emission and long light-emitting lifetime. The fluorescence film was prepared through phase transformation method by the fluorescent polymer material PSE−SO3H−Tb3+. The film has the strong stability property in different pH conditions (pH 1~13). Thus, this kind of organic fluorescent polysulfate composite material may have certain prospects application in terms of detection and luminescence in extreme chemical environments in the future

    Fluorescent Composites Prepared of Tb3+ and Sulfonated Sulfate Polymer Constructed through Post-Sulfonation Sulfur-Fluorine Exchange Polymerization by Symmetric Molecular

    No full text
    Organic fluorescent materials are widely applied in different important fields, such as light-emitting display, explosive detection, molecular imprinting, and so on, because of their low cost, easy functionalization, and large-scale fabrication. In this work, we designed and synthesized a new kind of organic fluorescent polysulfate composite material through post-sulfonation sulfur-fluorine exchange polymerization (a new kind of click chemistry) by symmetric molecular. Sulfur-fluorine exchange polymerization: symmetrical structure SO2F&minus;R1&minus;SO2F molecular reacted with symmetrical OH&minus;R2&minus;OH molecular through nucleophilic reaction in the presence of inorganic base. The polysulfate material was further modified by ClSO3H to get PSE&minus;SO3H materials. Tb3+ was highly dispersed on PSE&minus;SO3H to afford organic-inorganic hybrid fluorescent materials through the conventional coordination chemistry method. The emission wavelength of the organic-inorganic hybrid fluorescent polymer PSE&minus;SO3H&minus;Tb3+ was between 475 and 685 nm, the quantum yield reached 1.18%, and fluorescence lifetime lasted for 730.168 us, with the pure green light emission and long light-emitting lifetime. The fluorescence film was prepared through phase transformation method by the fluorescent polymer material PSE&minus;SO3H&minus;Tb3+. The film has the strong stability property in different pH conditions (pH 1~13). Thus, this kind of organic fluorescent polysulfate composite material may have certain prospects application in terms of detection and luminescence in extreme chemical environments in the future
    corecore