188 research outputs found

    Statistical and dynamical fluctuations of Binder ratios in heavy ion collisions

    Full text link
    Higher moments of net-proton Binder ratio, which is suggested to be a good experimental measurement to locate the QCD critical point, is measured in relativistic heavy ion collisions. We firstly estimate the effect of statistical fluctuations of the third and forth order Binder ratios. Then the dynamical Binder ratio is proposed and investigated in both transport and statistical models. The energy dependence of dynamical Binder ratios with different system sizes at RHIC beam scan energies are presented and discussed.Comment: 5 pages, 3 figure

    Application of High-Resolution DNA Melting for Genotyping in Lepidopteran Non-Model Species: Ostrinia furnacalis (Crambidae)

    Get PDF
    Development of an ideal marker system facilitates a better understanding of the genetic diversity in lepidopteran non-model organisms, which have abundant species, but relatively limited genomic resources. Single nucleotide polymorphisms (SNPs) discovered within single-copy genes have proved to be desired markers, but SNP genotyping by current techniques remain laborious and expensive. High resolution melting (HRM) curve analysis represents a simple, rapid and inexpensive genotyping method that is primarily confined to clinical and diagnostic studies. In this study, we evaluated the potential of HRM analysis for SNP genotyping in the lepidopteran non-model species Ostrinia furnacalis (Crambidae). Small amplicon and unlabeled probe assays were developed for the SNPs, which were identified in 30 females of O. furnacalis from 3 different populations by our direct sequencing. Both assays were then applied to genotype 90 unknown female DNA by prior mixing with known wild-type DNA. The genotyping results were compared with those that were obtained using bi-directional sequencing analysis. Our results demonstrated the efficiency and reliability of the HRM assays. HRM has the potential to provide simple, cost-effective genotyping assays and facilitates genotyping studies in any non-model lepidopteran species of interest

    Missense VKOR mutants exhibit severe warfarin resistance but lack VKCFD via shifting to an aberrantly reduced state

    Get PDF
    Missense vitamin K epoxide reductase (VKOR) mutations in patients cause resistance to warfarin treatment but not abnormal bleeding due to defective VKOR activity. The underlying mechanism of these phenotypes remains unknown. Here we show that the redox state of these mutants is essential to their activity and warfarin resistance. Using a mass spectrometry-based footprinting method, we found that severe warfarin-resistant mutations change the VKOR active site to an aberrantly reduced state in cells. Molecular dynamics simulation based on our recent crystal structures of VKOR reveals that these mutations induce an artificial opening of the protein conformation that increases access of small molecules, enabling them to reduce the active site and generating constitutive activity uninhibited by warfarin. Increased activity also compensates for the weakened substrate binding caused by these mutations, thereby maintaining normal VKOR function. The uninhibited nature of severe resistance mutations suggests that patients showing signs of such mutations should be treated by alternative anticoagulation strategies

    Improving Pneumonia Classification and Lesion Detection Using Spatial Attention Superposition and Multilayer Feature Fusion

    Get PDF
    Pneumonia is a severe inflammation of the lung that could cause serious complications. Chest X-rays (CXRs) are commonly used to make a diagnosis of pneumonia. In this paper, we propose a deep-learning-based method with spatial attention superposition (SAS) and multilayer feature fusion (MFF) to facilitate pneumonia diagnosis based on CXRs. Specifically, an SAS module, which takes advantage of the channel and spatial attention mechanisms, was designed to identify intrinsic imaging features of pneumonia-related lesions and their locations, and an MFF module was designed to harmonize disparate features from different channels and emphasize important information. These two modules were concatenated to extract critical image features serving as the basis for pneumonia diagnosis. We further embedded the proposed modules into a baseline neural network and developed a model called SAS-MFF-YOLO to diagnose pneumonia. To validate the effectiveness of our model, extensive experiments were conducted on two CXR datasets provided by the Radiological Society of North America (RSNA) and the AI Research Institute. SAS-MFF-YOLO achieved a precision of 88.1%, a recall of 98.2% for pneumonia classification and an AP50 of 99% for lesion detection on the AI Research Institute dataset. The visualization of intermediate feature maps showed that our method could facilitate uncovering pneumonia-related lesions in CXRs. Our results demonstrated that our approach could be used to enhance the performance of the overall pneumonia detection on CXR imaging

    ESSM: An Extractive Summarization Model with Enhanced Spatial-Temporal Information and Span Mask Encoding

    Get PDF
    Extractive reading comprehension is to extract consecutive subsequences from a given article to answer the given question. Previous work often adopted Byte Pair Encoding (BPE) that could cause semantically correlated words to be separated. Also, previous features extraction strategy cannot effectively capture the global semantic information. In this paper, an extractive summarization model is proposed with enhanced spatial-temporal information and span mask encoding (ESSM) to promote global semantic information. ESSM utilizes Embedding Layer to reduce semantic segmentation of correlated words, and adopts TemporalConvNet Layer to relief the loss of feature information. The model can also deal with unanswerable questions. To verify the effectiveness of the model, experiments on datasets SQuAD1.1 and SQuAD2.0 are conducted. Our model achieved an EM of 86.31% and a F1 score of 92.49% on SQuAD1.1 and the numbers are 80.54% and 83.27% for SQuAD2.0. It was proved that the model is effective for extractive QA task
    • …
    corecore