236,205 research outputs found

    Matter Effects in Active-Sterile Solar Neutrino Oscillations

    Full text link
    The matter effects for solar neutrino oscillations are studied in a general scheme with an arbitrary number of sterile neutrinos, without any constraint on the mixing, assuming only a realistic hierarchy of neutrino squared-mass differences in which the smallest squared-mass difference is effective in solar neutrino oscillations. The validity of the analytic results are illustrated with a numerical solution of the evolution equation in three examples of the possible mixing matrix in the simplest case of four-neutrino mixing.Comment: 26 pages. Final version published in Phys. Rev. D80 (2009) 11300

    The B\to D_s^{(*)}\eta^{(\prime)} decays in the perturbative QCD

    Full text link
    In this paper, we calculate the branching ratios for B+β†’Ds+Ξ·,B+β†’Ds+Ξ·β€²B^+\to D_s^+\eta, B^+\to D_s^+\eta^{\prime}, B+β†’Dsβˆ—+Ξ·B^+\to D_s^{*+}\eta and B+β†’Dsβˆ—+Ξ·β€² B^+\to D_s^{*+}\eta^{\prime} decays by employing the perturbative QCD (pQCD) factorization approach. Under the two kinds of Ξ·βˆ’Ξ·β€²\eta-\eta^{\prime} mixing schemes, the quark-flavor mixing scheme and the singlet-octet mixing scheme, we find that the calculated branching ratios are consistent with the currently available experimental upper limits. We also considered the so called "fDsf_{D_s} puzzle", by using two groups of parameters about the Ds(βˆ—)D^{(*)}_s meson decay constants, that is fDs=241f_{D_s}=241 MeV, fDsβˆ—=272f_{D^*_s}=272 MeV and fDs=274f_{D_s}=274 MeV, fDsβˆ—=312f_{D^*_s}=312 MeV, to calculate the branching ratios for the considered decays. We find that the results change 30%30\% by using these two different groups of paramters.Comment: 12 pages, 1 figure. Typos removed, minor correction

    Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei

    Full text link
    Capturing low-energy electron antineutrinos on radioactive Ho-163 nuclei, which decay into Dy-163 via electron capture (EC), is a noteworthy opportunity to detect relic sterile antineutrinos. Such hypothetical particles are more or less implied by current experimental and cosmological data, and they might be a part of hot dark matter or a candidate for warm dark matter in the Universe. Using the isotope Ho-163 as a target and assuming reasonable active-sterile antineutrino mixing angles, we calculate the capture rate of relic electron antineutrinos against the corresponding EC-decay background in the presence of sterile antineutrinos at the sub-eV or keV mass scale. We show that the signature of hot or warm sterile antineutrino dark matter should in principle be observable, provided the target is big enough and the energy resolution is good enough.Comment: 16 pages, 6 figures, more discussions and references added. To appear in JCA

    The Coupled Cluster Method Applied to Quantum Magnets: A New LPSUBmm Approximation Scheme for Lattice Models

    Get PDF
    A new approximation hierarchy, called the LPSUBmm scheme, is described for the coupled cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-1/2 Heisenberg antiferromagnetic) spin-lattice models, namely: the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods and the CCM using the alternative LSUBmm and DSUBmm schemes. Each of the three CCM schemes (LSUBmm, DSUBmm and LPSUBmm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications
    • …
    corecore