101,077 research outputs found
LP-based Covering Games with Low Price of Anarchy
We present a new class of vertex cover and set cover games. The price of
anarchy bounds match the best known constant factor approximation guarantees
for the centralized optimization problems for linear and also for submodular
costs -- in contrast to all previously studied covering games, where the price
of anarchy cannot be bounded by a constant (e.g. [6, 7, 11, 5, 2]). In
particular, we describe a vertex cover game with a price of anarchy of 2. The
rules of the games capture the structure of the linear programming relaxations
of the underlying optimization problems, and our bounds are established by
analyzing these relaxations. Furthermore, for linear costs we exhibit linear
time best response dynamics that converge to these almost optimal Nash
equilibria. These dynamics mimic the classical greedy approximation algorithm
of Bar-Yehuda and Even [3]
Concurrent bandits and cognitive radio networks
We consider the problem of multiple users targeting the arms of a single
multi-armed stochastic bandit. The motivation for this problem comes from
cognitive radio networks, where selfish users need to coexist without any side
communication between them, implicit cooperation or common control. Even the
number of users may be unknown and can vary as users join or leave the network.
We propose an algorithm that combines an -greedy learning rule with a
collision avoidance mechanism. We analyze its regret with respect to the
system-wide optimum and show that sub-linear regret can be obtained in this
setting. Experiments show dramatic improvement compared to other algorithms for
this setting
A Light Sterile Neutrino in the TopFlavor Model
A scenario based on the TopFlavor model is presented to explain the origin of
a light sterile neutrino as indicated by all combined neutrino oscillation
experiments. The model is phenomenologically well motivated and compatible with
all available low-energy data. The derived nuetrino mass matrix can
qualitatively explain the observed hierarchy in the neutrino mass splittings as
indicated by the neutrino oscillation data. Numerical results are obtained for
special cases.Comment: Plain Latex file, 12 page
Benchmark generator for CEC 2009 competition on dynamic optimization
Evolutionary algorithms(EAs) have been widely applied to solve stationary optimization problems. However, many real-world applications are actually dynamic. In order to study the performance of EAs in dynamic environments, one important task is to develop proper dynamic benchmark problems. Over the years, researchers have applied a number of dynamic test problems to compare the performance of EAs in dynamic environments, e.g., the âmoving peaks â benchmark (MPB) proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [6], the singleand multi-objective dynamic test problem generator by dynamically combining different objective functions of exiting stationary multi-objective benchmark problems suggested by Jin and Sendhoff [2], Yang and Yaoâs exclusive-or (XOR) operator [10, 11, 12], Kangâs dynamic traveling salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc. Though a number of DOP generators exist in the literature, there is no unified approach of constructing dynamic problems across the binary space, real space and combinatorial space so far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4], which construct dynamic environments for all the three solution spaces. Especially, in the rea
Thermal Timescale Mass Transfer and the Evolution of White Dwarf Binaries
The evolution of binaries consisting of evolved main sequence stars (1 <
M_d/Msun < 3.5) with white dwarf companions (0.7 < M_wd/Msun < 1.2) is
investigated through the thermal mass transfer phase. Taking into account the
stabilizing effect of a strong, optically thick wind from the accreting white
dwarf surface, we have explored the formation of several evolutionary groups of
systems for progenitors with initial orbital periods of 1 and 2 days. The
numerical results show that CO white dwarfs can accrete sufficient mass to
evolve to a Type Ia supernova and ONeMg white dwarfs can be built up to undergo
accretion induced collapse for donors more massive than about 2 Msun. For
donors less massive than ~2 Msun the system can evolve to form a He and CO or
ONeMg white dwarf pair. In addition, sufficient helium can be accumulated (~0.1
Msun) in systems characterized by 1.6 < M_d/Msun < 1.9 and 0.8 < M_wd/Msun < 1
such that sub Chandrasekhar mass models for Type Ia supernovae, involving off
center helium ignition, are possible for progenitor systems evolving via the
Case A mass transfer phase. For systems characterized by mass ratios > 3 the
system likely merges as a result of the occurrence of a delayed dynamical mass
transfer instability. A semi-analytical model is developed to delineate these
phases which can be easily incorporated in population synthesis studies of
these systems.Comment: 9 pages, 6 figures, Latex, emulateapj style, ApJ accepte
Highly-ordered graphene for two dimensional electronics
With expanding interest in graphene-based electronics, it is crucial that
high quality graphene films be grown. Sublimation of Si from the 4H-SiC(0001)
Si-terminated) surface in ultrahigh vacuum is a demonstrated method to produce
epitaxial graphene sheets on a semiconductor. In this paper we show that
graphene grown from the SiC (C-terminated) surface are of higher
quality than those previously grown on SiC(0001). Graphene grown on the C-face
can have structural domain sizes more than three times larger than those grown
on the Si-face while at the same time reducing SiC substrate disorder from
sublimation by an order of magnitude.Comment: Submitted to Appl. Phys. Let
Sharpenings of Li's criterion for the Riemann Hypothesis
Exact and asymptotic formulae are displayed for the coefficients
used in Li's criterion for the Riemann Hypothesis. For we obtain
that if (and only if) the Hypothesis is true,
(with and explicitly given, also for the case of more general zeta or
-functions); whereas in the opposite case, has a non-tempered
oscillatory form.Comment: 10 pages, Math. Phys. Anal. Geom (2006, at press). V2: minor text
corrections and updated reference
James van Allen and his namesake NASA mission
Abstract
In many ways, James A. Van Allen defined and âinventedâ modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities
A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger
Neutron star-neutron star mergers are known to be associated with short
gamma-ray bursts. If the neutron star equation of state is sufficiently stiff,
at least some of such mergers will leave behind a supramassive or even a stable
neutron star that spins rapidly with a strong magnetic field (i.e., a
magnetar). Such a magnetar signature may have been observed as the X-ray
plateau following a good fraction (up to 50%) of short gamma-ray bursts, and it
has been expected that one may observe short gamma-ray burst-less X-ray
transients powered by double neutron star mergers. A fast X-ray transient
(CDF-S XT1) was recently found to be associated with a faint host galaxy whose
redshift is unknown. Its X-ray and host-galaxy properties allow several
possibleexplanations including a short gamma-ray burst seen off axis, a
low-luminosity gamma-ray burst at high redshift, or a tidal disruption event
involving an intermediate mass black hole and a white dwarf. Here we report a
second X-ray transient, CDF-S XT2, that is associated with a galaxy at redshift
z = 0.738. The light curve is fully consistent with being powered by a
millisecond magnetar. More intriguingly, CDF-S XT2 lies in the outskirts of its
star-forming host galaxy with a moderate offset from the galaxy center, as
short bursts often do. The estimated event rate density of similar X-ray
transients, when corrected to the local value, is consistent with the double
neutron star merger rate density inferred from the detection of GW170817.Comment: 29 pages, 4 figures, 3 tables, published in Nature on 11 April 201
- âŠ