281 research outputs found
Flexible operation of supercritical power plant via integration of thermal energy storage
© 2018 The Author(s).This chapter presents the recent research on various strategies for power plant flexible operations to meet the requirements of load balance. The aim of this study is to investigate whether it is feasible to integrate the thermal energy storage (TES) with the thermal power plant steam-water cycle. Optional thermal charge and discharge locations in the cycle have been proposed and compared. Dynamic modeling and simulations have been carried out to demonstrate the capability of TES integration in supporting the flexible operation of the power plant. The simulation software named SimuEngine is adopted, and a 600 MW supercritical coal-fired power plant model is implemented onto the software platform. Three TES charging strategies and two TES discharging strategies are proposed and verified via the simulation platform. The simulation results show that it is feasible to extract steam from steam turbines to charge the TES and to discharge the stored thermal energy back to the power generation processes. The improved capability of the plant flexible operation is further studied in supporting the responses to the grid load demand changes. The results demonstrated that the TES integration has led to much faster and more flexible responses to the load demand changes.Peer reviewe
Study of supercritical power plant integration with high temperature thermal energy storage for flexible operation
The paper presents the recent research in study of the strategies for the power plant flexible operation to serve the requirement of grid frequency control and load balance. The study aims to investigate whether it is feasible to bring the High Temperature Thermal Storage (HTTS) to the thermal power plant steam-water cycle, to identify the suitable thermal charge and discharge locations in the cycle and to test how the HTTS integration can help support grid operation via power plant dynamic mathematical modelling and simulation. The simulation software named SimuEngine is adopted and a 600 MW supercritical coal-fired power plant model is implemented onto the software platform. Three HTTS charging strategies and two HTTS discharging strategies are proposed and tested via the simulation platform. The simulation results show that it is feasible to extract steam from the steam turbine to charge the HTTS, and to discharge the stored thermal energy back to the power generation processes. With the integration of the HTTS charge and discharge processes, the power plant simulation model is also connected to a simplified GB (Great Britain) grid model. Then the study is extended to test the improved capability of the plant flexible operation in supporting the responses to the grid load demand changes. The simulation results show that the power plant with HTTS integration has faster dynamic responses to the load demand changes and, in turn, faster responses to grid frequency services
Design of a stiffness adjustable magnetic fluid shock absorber based on optimal stiffness coefficient
With the rapid development of aerospace technology, the vibration problem of
the spacecraft flexible structure urgently needs to be solved. Magnetic fluids
are a type of multi-functional smart materials, which can be employed in shock
absorbers to eliminate these vibrations. Referring to the calculation methods
of stiffness coefficients of other passive dampers, the stiffness coefficient
formula of magnetic fluid shock absorbers (MFSAs) was derived. Meanwhile, a
novel stiffness adjustable magnetic fluid shock absorber (SA-MFSA) was
proposed. On the basis of the second-order buoyancy principle, a series of
SA-MFSAs were fabricated. The range of stiffness coefficients covered by these
SA-MFSAs contains the optimal stiffness coefficient estimated by formulas. The
repulsive force measurement and vibration attenuation experiments were
conducted on these SA-MFSAs. In the case of small amplitude, the relationship
between the repulsive force and the offset distance was linear. The simulation
and experiment curves of repulsive forces were in good agreement. The results
of vibration attenuation experiments demonstrated that the rod length and the
magnetic fluid mass influence the damping efficiency of SA-MFSAs. In addition,
these results verified that the SA-MFSA with the optimal stiffness coefficient
performed best. Therefore, the stiffness coefficient formula can guide the
design of MFSAs.Comment: 18 pages, 12 figure
Flow-State Identification of Oil-Based Magnetic Fluid Seal Based on Acoustic Emission Technology
At present, most research studies on the changing process of the magnetic fluid seal are analyzed with the pressure signal of each chamber or the magnetic fluid flow photos taken by a camera, which need to change the seal structure. Based on nondestructive acoustic emission technology, a flow-state identification model of the oil-based magnetic fluid seal using the grey wolf optimizer and random forest is proposed in this study. The acoustic emission signal and pressure signal are collected at the same time under static conditions in the two-stage pole shoes oil-based magnetic fluid seal experiment. Through power spectrum analysis of the acoustic emission signal with the aid of pressure signal, the changing process before seal failure is divided into three states: no magnetic fluid flow, the first pole shoe magnetic fluid flow, and two pole shoes magnetic fluid flow together. Then, the time- and frequency-domain features of acoustic emission signal samples are extracted to form feature vectors as inputs, and the flow-state identification model is established based on the grey wolf optimizer and random forest. The experimental results show that the testing accuracy and F1 scores (the index representing the precision and recall at the same weight) of three states are close to or higher than 90%. The effectiveness of oil-based magnetic fluid seal flow-state identification model based on non-destructive acoustic emission technology is proved
A novel magnetic fluid shock absorber with levitating magnets
The paper presents a shock absorber whose working element includes two magnetic fluid rings around a group of magnets. The damping efficiency of this shock absorber is investigated by the free oscillations of an elastic plate and can be well explained with the classical equations of motion. In the shock absorber, a nonlinear equivalent stiffness is provided by the magnetic repulsion force, which controls the movement of the working element and varies in conformity to a power law. Through the theoretical and experimental study on the magnetic repulsion force, the nonlinear equivalent stiffness is determined and depends on the initial distance between the working element and the repulsion magnet. For an oscillation with the amplitude of 1mm and frequency of 1.1 Hz, the damping efficiency is inversely proportional to the nonlinear equivalent stiffness
Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications
The field of large-scale electrical energy storage is growing rapidly in both academia and industry, which has driven a fast increase in the research and development on adiabatic compressed air energy storage. The significant challenge of adiabatic compressed air energy storage with its thermal energy storage is in the complexity of the system dynamic characteristics arising from the multi-physical (pneumatic, thermal, mechanical and electrical) processes. This has led to a strong demand for simulation software tools specifically for dynamic modelling and transient control of relevant multi-scale components, subsystems and whole systems with different configurations. The paper presents a feasibility study of a simulation tool development implemented by the University of Warwick Engineering team to achieve this purpose. The developed tool includes a range of validated simulation models from the fields of pneumatics, thermodynamics, heat transfer, electrical machines and power grids. The structure of the developed tool is introduced and a component library is built up on the Matlab/Simulink platform. The mathematical descriptions of key components are presented, which precedes a presentation of four case studies of different applications. The case studies demonstrate that the simulation software tool can be used for dynamic modelling of multi-scale adiabatic compressed air energy storage components and systems, real performance analysis, dynamic control strategy implementation and feasibility studies of applications of adiabatic compressed air energy storage integrated with power grids. The paper concludes that the continued development and use of such a tool is both feasible and valuable
Design, Implementation and Modeling of Flooding Disaster-Oriented USV
Although there exist some unmanned surface platforms, and parts of them have been applied in flooding disaster relief, the autonomy of these platforms is still so weak that most of them can only work under the control of operators. The primary reason is the difficulty of obtaining a dynamical model that is sufficient rich for model-based control and sufficient simple for model parameters identification. This makes them difficult to be used to achieve some high-performance autonomous control, such as robust control with respect to disturbances and unknown dynamics and trajectory tracking control in complicated and dynamical surroundings. In this chapter, a flooding disaster-oriented unmanned surface vehicle (USV) designed and implemented by Shenyang Institute of Automation, Chinese Academy of Sciences (SIA, CAS) is introduced first, including the hardware and software structures. Then, we propose a quasi-linear parameter varying (qLPV) model to approach the dynamics of the USV system. We first apply this to solve a structured modeling problem and then introduce model error to solve an unstructured modeling problem. Subsequently, the qLPV model identification results are analyzed and the superiority compared to two linear models is demonstrated. At last, extensive application experiments, including rescuing rope throwing using an automatic pneumatic and water sampling in a 2.5 m radius circle, are described in detail to show the performance of course keeping control and GPS point tracking control based on the proposed model
- …