1,260 research outputs found

    AI approaches to understand human deceptions, perceptions, and perspectives in social media

    Get PDF
    Social media platforms have created virtual space for sharing user generated information, connecting, and interacting among users. However, there are research and societal challenges: 1) The users are generating and sharing the disinformation 2) It is difficult to understand citizens\u27 perceptions or opinions expressed on wide variety of topics; and 3) There are overloaded information and echo chamber problems without overall understanding of the different perspectives taken by different people or groups. This dissertation addresses these three research challenges with advanced AI and Machine Learning approaches. To address the fake news, as deceptions on the facts, this dissertation presents Machine Learning approaches for fake news detection models, and a hybrid method for topic identification, whether they are fake or real. To understand the user\u27s perceptions or attitude toward some topics, this study analyzes the sentiments expressed in social media text. The sentiment analysis of posts can be used as an indicator to measure how topics are perceived by the users and how their perceptions as a whole can affect decision makers in government and industry, especially during the COVID-19 pandemic. It is difficult to measure the public perception of government policies issued during the pandemic. The citizen responses to the government policies are diverse, ranging from security or goodwill to confusion, fear, or anger. This dissertation provides a near real-time approach to track and monitor public reactions toward government policies by continuously collecting and analyzing Twitter posts about the COVID-19 pandemic. To address the social media\u27s overwhelming number of posts, content echo-chamber, and information isolation issue, this dissertation provides a multiple view-based summarization framework where the same contents can be summarized according to different perspectives. This framework includes components of choosing the perspectives, and advanced text summarization approaches. The proposed approaches in this dissertation are demonstrated with a prototype system to continuously collect Twitter data about COVID-19 government health policies and provide analysis of citizen concerns toward the policies, and the data is analyzed for fake news detection and for generating multiple-view summaries

    Assessing Postural Stability Via the Correlation Patterns of Vertical Ground Reaction Force Components

    Get PDF
    Background Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). Methods In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. Results In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18–24 and 65–73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. Conclusions By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system

    Developing a Low-Cost Force Treadmill via Dynamic Modeling

    Get PDF
    By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of “walk-on-the-spot motion,” it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach

    Retraction and Generalized Extension of Computing with Words

    Full text link
    Fuzzy automata, whose input alphabet is a set of numbers or symbols, are a formal model of computing with values. Motivated by Zadeh's paradigm of computing with words rather than numbers, Ying proposed a kind of fuzzy automata, whose input alphabet consists of all fuzzy subsets of a set of symbols, as a formal model of computing with all words. In this paper, we introduce a somewhat general formal model of computing with (some special) words. The new features of the model are that the input alphabet only comprises some (not necessarily all) fuzzy subsets of a set of symbols and the fuzzy transition function can be specified arbitrarily. By employing the methodology of fuzzy control, we establish a retraction principle from computing with words to computing with values for handling crisp inputs and a generalized extension principle from computing with words to computing with all words for handling fuzzy inputs. These principles show that computing with values and computing with all words can be respectively implemented by computing with words. Some algebraic properties of retractions and generalized extensions are addressed as well.Comment: 13 double column pages; 3 figures; to be published in the IEEE Transactions on Fuzzy System

    Granular Effect on Electron Conduction in Discontinuous Metal Films

    Full text link
    We reanalyze the seminal work by Dolan and Osheroff [Phys. Rev. Lett. 43\textbf{43}, 721 (1979)] which reported anomalous low-temperature conduction of high-resistivity thin-film metal strips. We argue that the observed logarithmic increase of resistance with decreasing temperature in their 3-nm-thick Au-Pd strips be ascribed to the granularity effect on electron conduction in discontinuous metal films. This reanalysis is further supported by our measurements on conducting Pbx_x(SiO2_2)1x_{1-x} nanogranular films, where xx is the volume fraction of Pb.Comment: 7 pages, 2 figure

    Electron dephasing in homogeneous and inhomogeneous indium tin oxide thin films

    Full text link
    The electron dephasing processes in two-dimensional homogeneous and inhomogeneous indium tin oxide thin films have been investigated in a wide temperature range 0.3--90 K. We found that the small-energy-transfer electron-electron (ee-ee) scattering process dominated the dephasing from a few K to several tens K. At higher temperatures, a crossover to the large-energy-transfer ee-ee scattering process was observed. Below about 1--2 K, the dephasing time τφ\tau_\varphi revealed a very weak temperature dependence, which intriguingly scaled approximately with the inverse of the electron diffusion constant DD, i.e., τφ(T0.3K)1/D\tau_\varphi (T \approx 0.3 \, {\rm K}) \propto 1/D. Theoretical implications of our results are discussed. The reason why the electron-phonon relaxation rate is negligibly weak in this low-carrier-concentration material is presented.Comment: 10 pages, 7 figure
    corecore