45 research outputs found

    The transition from quantum field theory to one-particle quantum mechanics and a proposed interpretation of Aharonov-Bohm effect

    Full text link
    In this article we demonstrate a sense in which the one-particle quantum mechanics (OPQM) and the classical electromagnetic four-potential arise from quantum field theory (QFT). In addition, the classical Maxwell equations are derived from a QFT scattering process, while both classical electromagnetic fields and potentials serve as mathematical tools to approximate the interactions among elementary particles described by QFT physics. Furthermore, a plausible interpretation of the Aharonov-Bohm (AB) effect is raised within the QFT framework. We provide a quantum treatment of the source of electromagnetic potentials and argue that the underlying mechanism in the AB effect can be understood via interactions among electrons described by QFT where the interactions are mediated by virtual photons.Comment: 19 pages, 2 figures. Final published versio

    Thingking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area

    Get PDF
    In order to solve the problems that restrict the efficient development of coalbed methane resources under the conditions of soft and low permeability outburst coal seams in Huainan Mining Area, such as complex coal seam structure, multi-source gas emission, rapid decline of drainage flow, high rock roadway and drilling costs, and low (ultra-low) concentration coalbed methane utilization rate, six key technologies suitable for the coordinated development mode of coal and coalbed methane under the condition of coal seam group mining in Huainan mining area are put forward, namely: coalbed methane extraction technology of ground level staged fracturing wells, shield rapid construction technology of coalbed methane extraction roadways, enhanced extraction technology of underground soft coalbed methane, coalbed methane extraction technology of pressure relief in ground mining area, the construction technology of "replacing roadways with holes", and cascade utilization technology of low concentration coalbed methane. The application of supporting key technologies shows that staged fracturing technology and refined drainage and production technology of roof horizontal wells in broken and soft coal seam have effectively improved the pre pumping production of coalbed methane; The full face hard rock roadheader in deep coal mine roadway greatly improves the roadway excavation efficiency, realizing the automation and less humanization of hard rock excavation; Sand adding of hydraulic fracturing and ultra-high hydraulic slotting have realized pressure relief and permeability enhancement in large areas underground coal mine; Type III and IV surface mining area wells can replace the roof high drainage roadway in the treatment of pressure relief gas in coal seam group mining, and reduce the coalbed methane drainage intensity of other measures; The technology of "replacing roadways with holes" has significantly improved the quality of successful directional drilling at middle and high levels in complex roof; Cascade utilization technology of low concentration coalbed methane has greatly reduced the emission of coalbed methane. The six key technologies have guaranteed the safe production in Huainan mining area, and comprehensively improved the output of coal and coalbed methane and the utilization level of coalbed methane. Six key technologies ensure the safe production in Huainan mining area, and comprehensively improved the output of coal and coalbed methane and the utilization level of coalbed methane. Finally, in view of the problems such as high operation cost, low production, small scope of hydraulic fracturing coal reservoir reconstruction technology for surface horizontal wells, and the risk of breakage of mining wells, and small scale of cascade utilization of ultra-low concentration coalbed methane, the development direction of deep CBM precise geological guidance, super large scale efficient reservoir volume transformation, pumping effect evaluation technology, stable and continuous pumping technology of surface wells in mining areas, underground large area intelligent hydraulic enhanced permeability technology, "one well with multiple uses" collaborative pumping CBM technology, and full concentration CBM comprehensive utilization technology are proposed

    Cavity QED of superradiant phase transition in two dimensional materials

    No full text
    This thesis consists of two parts. In the first part, the light-matter coupling between cyclotron transition and photon is theoretically investigated in some 2-D materials such as the monolayer MoS2, graphene and monolayer black phosphorene (BP) systems. The results show that, in these 2-D materials, the ultrastrong light-matter coupling can be achieved at a high filling factor of Landau levels. Furthermore, we show that, in contrast to the case for conventional semiconductor resonators, the MoS2 system shows a vacuum instability. In monolayer MoS2 resonator, the diamagnetic term can still play an important role in determining magnetopolariton dispersion which is different from monolayer graphene system. The diamagnetic term arises from electron-hole asymmetry which indicates that electron-hole asymmetry can influence the quantum phase transition. Meanwhile, we show that, similar with some other 2D materials such as graphene and MoS2, the monolayer BP system shows a vacuum instability. However, in contrast with other 2D materials, the BP system displays a large energy gap between three branches of polaritons because of its strong anisotropic behavior in the eigenstates of the band structures. For the graphene system, we investigate the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. At last, in contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our study provides new insights in cavity-controlled magneto-transport in these 2-D systems, which could lead to the development of polariton-based devices. The second part is a diversion from the main content of this thesis; readers who are not interested in foundational issues of physics can skip this part. For one charged quantum particle P moving in an electromagnetic vector potential created by some other charged particles, we can either use the framework of one particle quantum mechanics (OPQM) to calculate the evolutions of P, or we can treat this as an multi-particles problem in the framework of quantum field theory and calculate the evolution of P. These two methods need to be equavalent, i.e., they produce the same result for the evolution of P. One open question is how to describe the evolution of P within the framework of quantum field theory and show that these two methods yield the same result? In chapter 5, we are going to derive the OPQM from the quantum field theory, i.e., the quantum electrodynamics (QED) to be specific. We start with the discussions on the AB effect then raise a plausible interpretation within the QED framework. We provide a quantum treatment of the source of the electromagnetic potential and argue that the underlying mechanism in AB effect can be viewed as interactions between electrons described by QED theory where the interactions are mediated by virtual photons. On further analysis, we show that the framework of one particle quantum mechanics (OPQM) can be given, in general, as a mathematically approximated model which is reformulated from QED theory while the AB effect scheme provides a platform for our derivations. In addition, the classical Maxwell equations are derived from QED scattering process while both classical electromagnetic fields and potentials serve as mathematical tools that are constructed to approximate the interactions among elementary particles described by QED physics. This work opens up a new perspective on the nature of electromagnetic fields and potentials.Doctor of Philosoph

    Cavity QED of superradiant phase transition in two dimensional materials

    No full text
    In modern physics, the investigation of the interaction between light and matter is important from both a fundamental and an applied point of view. Cavity quantum electrodynamics (cavity QED) is the study of the interaction between light confined in a reflective cavity and atoms or other particles where the quantum nature of light photons is significant. The strong interaction between an exciton and cavity photon in a high-finesse microcavity can induce a hybrid light-matter eigenstate which is usually named as polariton in solid-state systems. This strong light-matter interaction can be achieved when this interaction is larger than all broadenings caused by other various factors e.g. electron phonon scattering and cavity loss. The polariton is now stimulating tremendous research interests due to its high potential in cavity quantum electrodynamics (QED) and the achievement of polaritonic devices. Moreover, when the interaction strength between an excitation and the cavity photon, quantified by vacuum Rabi frequency, becomes comparable to or larger than the corresponding electronic transition frequency in a cavity, the system can enter an ultrastrong coupling regime, which has been experimentally observed. In this regime, the standard rotating-wave approximation is no longer valid and the antiresonant term of the interaction Hamiltonian starts to play an important role, giving rise to exciting effects in cavity QED.The Aharonov-Bohm (AB) effect is a fundamental quantum phenomenon that bears the significance of the nature of electromagnetic fields and potentials. Besides its fundamental significance in quantum theory, its importance for applications in interferometric devices is omnipresent. Recently, since the 2D materials have triggered immense interest, some work has been done to integrate the AB effect with the electronic and transport properties of 2D materials.This thesis consists of two parts. In the first part, the light-matter coupling between cyclotron transition and photon is theoretically investigated in some 2-D materials such as the monolayer MoS2, graphene and monolayer black phosphorene (BP) systems. The results show that, in these 2-D materials, the ultrastrong light-matter coupling can be achieved at a high filling factor of Landau levels. Furthermore, we show that, in contrast to the case for conventional semiconductor resonators, the MoS2 system shows a vacuum instability. In monolayer MoS2 resonator, the diamagnetic term can still play an important role in determining magnetopolariton dispersion which is different from monolayer graphene system. The diamagnetic term arises from electron-hole asymmetry which indicates that electron-hole asymmetry can influence the quantum phase transition. Meanwhile, we show that, similar with some other 2D materials such as graphene and MoS2, the monolayer BP system shows a vacuum instability. However, in contrast with other 2D materials, the BP system displays a large energy gap between three branches of polaritons because of its strong anisotropic behavior in the eigenstates of the band structures. For thegraphene system, we investigate the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. At last, in contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our study provides new insights in cavity-controlled magneto-transport in these 2-D systems, which could lead to the development of polariton-based devices. The second part is a diversion from the main content of this thesis; readers who are not interested in foundational issues of physics can skip this part. For one charged quantum particle P moving in an electromagnetic vector potential Aˆµ = ( φˆ, - Aˆ )  created by some other charged particles, we can either use the framework of one particle quantum mechanics (OPQM) to calculate the evolutions of P, or we can treat this as an multi-particles problem in the framework of quantum field theory and calculate the evolution of P. These two methods need to be equivalent, i.e., they produce the same result for the evolution of P. One open question is how to describe the evolution of P within the framework of quantum field theory and show that these two methods yield the same result? In chapter 5, we are going to derive the OPQM from the quantum field theory, i.e., the quantum electrodynamics (QED) to be specific. We start with the discussions on the AB effect then raise a plausible interpretation within the QED framework. We provide a quantum treatment of the source of the electromagnetic potential and argue that the underlying mechanism in AB effect can be viewed as interactions between electrons described by QED theory where the interactions are mediated by virtual photons. On further analysis, we show that the framework of one particle quantum mechanics (OPQM) can be given, in general, as a mathematically approximated model which is reformulated from QED theory while the AB effect scheme provides a platform for our derivations. In addition, the classical Maxwell equations are derived from QED scattering process while both classical electromagnetic fields and potentials serve as mathematical tools that are constructed to approximate the interactions among elementary particles described by QED physics. This work opens up a new perspective on the nature of electromagnetic fields and potentials

    An augmented formulation of distributed compliant mechanism optimization using a level set method

    No full text
    Topology optimization has emerged as one of the key approaches to design compliant mechanisms. However, one of the main difficulties is that the resulted compliant mechanisms often have de facto hinges. For this reason, a simple yet efficient formulation for designing hinge-free compliant mechanisms is developed and examined within a level set–based topology optimization framework. First, the conventional objective function is augmented using an output stiffness. Second, the proposed formulation is solved using a level set method for designing some benchmark problems in the literature. It is shown that the proposed augmented objective function can prevent the de facto hinges in the obtained compliant mechanisms. Finally, some concluding remarks and future work are put forward

    The Impact of Communication Style Similarity on Customer’s Perception of Virtual Advisory Services: A Similarity Theory Perspective

    Get PDF
    Intelligent advisory services have gradually penetrated into every aspect of people\u27s lives. Ranging from e-commerce to e-government platforms, intelligent advisory systems, with anthropomorphic and user-centered design, can potentially help to remove the technical barriers that commonly exist on traditional websites. In the research background of an intelligent advisory system in the health domain, this study seeks to explore the impact of system/user communication style similarities on user’s perceptions towards the virtual advisory service. Drawing on Similarity Theory, we proposed a research framework to uncover the above relationships. Through conducting preliminary online surveys, this study empirically shows that the communication style of the virtual health advisory system, when aligned well with the user’s communication style, can engage the user better, leads to more enjoyment, credibility and clarity during the interaction process. These positive perceptions towards the system can potentially create a better sense of social presence and heightened interests in continuing using the advisor services

    Comprehensive Evaluation of Fatigue Performance of Modified Asphalt Mixtures in Different Fatigue Tests

    No full text
    The four-point bending beam fatigue test (4PB), two-point bending trapezoidal beam fatigue test (Trapezoidal Beam), and Overlay Tester (OT) are used to evaluate the fatigue performance of six kinds of asphalt mixtures that are widely used in engineering, and newly developed ones. The result shows that, in all three kinds of fatigue tests, the fatigue performances of the 6% SBS (styrene-butadiene-styrene block copolymer) modified asphalt mixture is the best, and those of the 10% WPE (waxed polyethylene) + 3% SBS, 4% SBS + 0.4% PA610, and 4% SBS modified asphalt mixture are good. The fatigue performances of the warm modified mixing agent and the base asphalt mixture are the worst. An increase in SBS content can effectively improve the fatigue performance of the asphalt mixture. The fatigue performance of the SBS-modified asphalt mixture can be improved by the addition of WPE and PA610. In different tests, the ranking of fatigue performance of the asphalt mixture is similar, and the specific ranking is slightly different. The three different fatigue tests can be used simultaneously to obtain a more comprehensive and objective evaluation in the R&D process for a new modified asphalt. The three fatigue tests process shows that more precise forming and cutting technology is needed, as the strain range used in the 4PB test is very wide, and the number of samples used in each group is small. The preparation of the Trapezoidal Beam test samples is complex; the amount of test data is huge and has high precision, which is suitable for scientific research instead of a field laboratory, and the strain range of the test is moderate in the three methods. The strain range of the OT test is the narrowest; the test specimen is relatively simple to prepare, and the fatigue performance of a specific modified asphalt mixture can be obtained quickly in a simple laboratory

    Structural system design and earthquake response analysis of prefabricated pile-plate bridge

    No full text
    With the advancement of building technology, the pile-plate structure, which originated in railway engineering, has been adopted into highway engineering. This study presents a new pile-plate structure connecting node. The addition of energy-dissipating components at the nodes and the use of non-shrinkage concrete at the joints demonstrate its novelty. The node’s ability to enter the plastic stage is enhanced, resulting in increased seismic performance. In this study, the seismic performance and energy consumption capacity of the pile plate joint were studied by numerical model, and the results showed that the stagnation curve of the pipe pile under low cycle reciprocating load was full and had good energy consumption capacity. Under the action of random seismic vibration, the displacement of the pile plate structure in one direction is up to 0.023 m, which meets the requirements of the specification. The innovative pile-plate joints are used in a nonlinear dynamic time-history analysis of the constructed bridge structure

    Discussions on the character and interpretation model of Kelasu deep structures in the Kuqa area

    No full text
    The character and interpretation model of deep structures in the Kelasu belt are discussed from growth strata, thrusting sequence, salt accumulation, and imbricate patterns between the shallow and deep structures. Seismic data shows that the fold hinges of growth strata in the south limb migrate toward north from deep to shallow, the growth axial surface connected along these fold hinges dips southward, and strata thickness in its south are thicker than that in the north. These characteristics of growth strata are completely different from that of basement-involved structures and salt structures. By the kinematic analysis of faults on the southern and northern sides of the Kela-2 structure, the northern fault is considered to thrust northward and form Kela-2 structure firstly, and then be cut through by the southern fault. Strong thrusting of the southern fault caused the Kela-2 structure to uplift several kilometers, and made the peripheral plastic rocks passively flow and accumulate in the footwall, this course is very similar to the pump suction. Based on this model, the sub-salt and sub-coal thrusting systems are interpreted in the deep Kelasu belt. In the sub-salt structural layer, the remaining lower part of Kela-2 structure in the footwall of its southern fault is the northern Keshen anticlinal belt. The discovery of the northern Keshen anticlinal belt and the Jurassic sub-coal thrusting structures greatly widens the exploration scope of the Kelasu belt, showing an enormous exploration potential. 摘要: : 从构造生长方式、冲断序列、盐聚集以及深浅层构造的叠置关系探讨克拉苏深部构造的性质与解释模型。地震反射资料表明,克拉苏深部构造南翼生长地层的褶皱枢纽由深至浅向北偏移,这些枢纽连线构成的生长轴面南倾,其北侧地层的厚度明显要比南侧薄,此种生长地层结构与基底卷入式构造和盐构造作用下的生长地层结构完全不同。通过对克拉2构造南北两侧断层的运动学分析,认为北侧断层首先向北逆冲形成了克拉2构造,然后被后期更强烈的南侧断层切割,造成克拉2构造逾千米的垂向抬升,由此产生“泵吸”效应使周围塑性岩层向断裂下盘流入和聚集。据此模式建立的克拉苏深部构造解释方案由古近系盐下和侏罗系煤下两套冲断系统组成,其中在盐下构造内部,被切割的克拉2构造的下半部分即是克深北背斜。克深北背斜带和侏罗系煤下冲断构造的发现,不仅拓宽了克拉苏构造带的勘探范围,也显示其尚有巨大的勘探潜力。图8参25 Key words: growth strata, pump suction, salt accumulation, sub-salt thrust system, sub-coal thrust system, Kelasu structural bel
    corecore