12,394 research outputs found
Efficient variational quantum simulator incorporating active error minimisation
One of the key applications for quantum computers will be the simulation of
other quantum systems that arise in chemistry, materials science, etc, in order
to accelerate the process of discovery. It is important to ask: Can this be
achieved using near future quantum processors, of modest size and under
imperfect control, or must it await the more distant era of large-scale
fault-tolerant quantum computing? Here we propose a variational method
involving closely integrated classical and quantum coprocessors. We presume
that all operations in the quantum coprocessor are prone to error. The impact
of such errors is minimised by boosting them artificially and then
extrapolating to the zero-error case. In comparison to a more conventional
optimised Trotterisation technique, we find that our protocol is efficient and
appears to be fundamentally more robust against error accumulation.Comment: 13 pages, 5 figures; typos fixed and small update
Hierarchical surface code for network quantum computing with modules of arbitrary size
The network paradigm for quantum computing involves interconnecting many
modules to form a scalable machine. Typically it is assumed that the links
between modules are prone to noise while operations within modules have
significantly higher fidelity. To optimise fault tolerance in such
architectures we introduce a hierarchical generalisation of the surface code: a
small `patch' of the code exists within each module, and constitutes a single
effective qubit of the logic-level surface code. Errors primarily occur in a
two-dimensional subspace, i.e. patch perimeters extruded over time, and the
resulting noise threshold for inter-module links can exceed ~ 10% even in the
absence of purification. Increasing the number of qubits within each module
decreases the number of qubits necessary for encoding a logical qubit. But this
advantage is relatively modest, and broadly speaking a `fine grained' network
of small modules containing only ~ 8 qubits is competitive in total qubit count
versus a `course' network with modules containing many hundreds of qubits.Comment: 12 pages, 11 figure
High threshold distributed quantum computing with three-qubit nodes
In the distributed quantum computing paradigm, well-controlled few-qubit
`nodes' are networked together by connections which are relatively noisy and
failure prone. A practical scheme must offer high tolerance to errors while
requiring only simple (i.e. few-qubit) nodes. Here we show that relatively
modest, three-qubit nodes can support advanced purification techniques and so
offer robust scalability: the infidelity in the entanglement channel may be
permitted to approach 10% if the infidelity in local operations is of order
0.1%. Our tolerance of network noise is therefore a order of magnitude beyond
prior schemes, and our architecture remains robust even in the presence of
considerable decoherence rates (memory errors). We compare the performance with
that of schemes involving nodes of lower and higher complexity. Ion traps, and
NV- centres in diamond, are two highly relevant emerging technologies.Comment: 5 figures, 12 pages in single column format. Revision has more
detailed comparison with prior scheme
Stabilisers as a design tool for new forms of Lechner-Hauke-Zoller Annealer
In a recent paper Lechner, Hauke and Zoller (LHZ) described a means to
translate a Hamiltonian of spin- particles with 'all-to-all'
interactions into a larger physical lattice with only on-site energies and
local parity constraints. LHZ used this mapping to propose a novel form of
quantum annealing. Here we provide a stabiliser-based formulation within which
we can describe both this prior approach and a wide variety of variants.
Examples include a triangular array supporting all-to-all connectivity, and
moreover arrangements requiring only or spins but providing
interesting bespoke connectivities. Further examples show that arbitrarily high
order logical terms can be efficiently realised, even in a strictly 2D layout.
Our stabilisers can correspond to either even-parity constraints, as in the LHZ
proposal, or as odd-parity constraints. Considering the latter option applied
to the original LHZ layout, we note it may simplify the physical realisation
since the required ancillas are only spin- systems (i.e. qubits,
rather than qutrits) and moreover the interactions are very simple. We make a
preliminary assessment of the impact of this design choices by simulating small
(few-qubit) systems; we find some indications that the new variant may maintain
a larger minimum energy gap during the annealing process.Comment: A dramatically expanded revision: we now show how to use our
stabiliser formulation to construct a wide variety of new physical layouts,
including ones with fewer than Order N^2 spins but custom connectivities, and
a means to achieve higher order coupling even in 2
Resource costs for fault-tolerant linear optical quantum computing
Linear optical quantum computing (LOQC) seems attractively simple:
information is borne entirely by light and processed by components such as beam
splitters, phase shifters and detectors. However this very simplicity leads to
limitations, such as the lack of deterministic entangling operations, which are
compensated for by using substantial hardware overheads. Here we quantify the
resource costs for full scale LOQC by proposing a specific protocol based on
the surface code. With the caveat that our protocol can be further optimised,
we report that the required number of physical components is at least five
orders of magnitude greater than in comparable matter-based systems. Moreover
the resource requirements grow higher if the per-component photon loss rate is
worse than one in a thousand, or the per-component noise rate is worse than
. We identify the performance of switches in the network as the single
most influential factor influencing resource scaling
Classical noise assists the flow of quantum energy by `momentum rejuvenation'
An important challenge in quantum science is to fully understand the
efficiency of energy flow in networks. Here we present a simple and intuitive
explanation for the intriguing observation that optimally efficient networks
are not purely quantum, but are assisted by some interaction with a `noisy'
classical environment. By considering the system's dynamics in both the
site-basis and the momentum-basis, we show that the effect of classical noise
is to sustain a broad momentum distribution, countering the depletion of high
mobility terms which occurs as energy exits from the network. This picture
predicts that the optimal level of classical noise is reciprocally related to
the linear dimension of the lattice; our numerical simulations verify this
prediction to high accuracy for regular 1D and 2D networks over a range of
sizes up to thousands of sites. This insight leads to the discovery that
dramatic further improvements in performance occur when a driving field targets
noise at the low mobility components
Quantum Information Processing with Delocalized Qubits under Global Control
Any technology for quantum information processing (QIP) must embody within it
quantum bits (qubits) and maintain control of their key quantum properties of
superposition and entanglement. Typical QIP schemes envisage an array of
physical systems, such as electrons or nuclei, with each system representing a
given qubit. For adequate control, systems must be distinguishable either by
physical separation or unique frequencies, and their mutual interactions must
be individually manipulable. These difficult requirements exclude many
nanoscale technologies where systems are densely packed and continuously
interacting. Here we demonstrate a new paradigm: restricting ourselves to
global control pulses we permit systems to interact freely and continuously,
with the consequence that qubits can become delocalized over the entire device.
We realize this using NMR studies of three carbon-13 nuclei in alanine,
demonstrating all the key aspects including a quantum mirror, one- and
two-qubit gates, permutation of densely packed qubits and Deutsch algorithms.Comment: 4 pages, 5 figure
- …