72 research outputs found
Spin-flip phenomena at the Co|graphene|Co interfaces
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98663/1/ApplPhysLett_98_133111.pd
Glycated Haemoglobin A1c Variability Score Elicits Kidney Function Decline in Chinese People Living with Type 2 Diabetes
Our aim was to investigate the association of glycated haemoglobin A1c (HbA1c) variability score (HVS) with estimated glomerular filtration rate (eGFR) slope in Chinese adults living with type 2 diabetes. This cohort study included adults with type 2 diabetes attending outpatient clinics between 2011 and 2019 from a large electronic medical record-based database of diabetes in China (WECODe). We estimated the individual-level visit-to-visit HbA1c variability using HVS, a proportion of changes in HbA1c of ≥0.5% (5.5 mmol/mol). We estimated the odds of people experiencing a rapid eGFR annual decline using a logistic regression and differences across HVS categories in the mean eGFR slope using a mixed-effect model. The analysis involved 2397 individuals and a median follow-up of 4.7 years. Compared with people with HVS ≤ 20%, those with HVS of 60% to 80% had 11% higher odds of experiencing rapid eGFR annual decline, with an extra eGFR decline of 0.93 mL/min/1.73 m(2) per year on average; those with HVS > 80% showed 26% higher odds of experiencing a rapid eGFR annual decline, with an extra decline of 1.83 mL/min/1.73 m(2) per year on average. Chinese adults with type 2 diabetes and HVS > 60% could experience a more rapid eGFR decline
Towards prediction of ordered phases in rechargeable battery chemistry via group–subgroup transformation
Abstract: The electrochemical thermodynamic and kinetic characteristics of rechargeable batteries are critically influenced by the ordering of mobile ions in electrodes or solid electrolytes. However, because of the experimental difficulty of capturing the lighter migration ion coupled with the theoretical limitation of searching for ordered phases in a constrained cell, predicting stable ordered phases involving cell transformations or at extremely dilute concentrations remains challenging. Here, a group-subgroup transformation method based on lattice transformation and Wyckoff-position splitting is employed to predict the ordered ground states. We reproduce the previously reported Li0.75CoO2, Li0.8333CoO2, and Li0.8571CoO2 phases and report a new Li0.875CoO2 ground state. Taking the advantage of Wyckoff-position splitting in reducing the number of configurations, we identify the stablest Li0.0625C6 dilute phase in Li-ion intercalated graphite. We also resolve the Li/La/vacancy ordering in Li3xLa2/3−xTiO3 (0 < x < 0.167), which explains the observed Li-ion diffusion anisotropy. These findings provide important insight towards understanding the rechargeable battery chemistry
Recommended from our members
MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway
ABSTRACT Hepatitis C virus (HCV) infection has been shown to regulate microRNA 130a (miR-130a) in patient biopsy specimens and in cultured cells. We sought to identify miR-130a target genes and to explore the mechanisms by which miR-130a regulates HCV and hepatitis B virus (HBV) replication. We used bioinformatics software, including miRanda, TargetScan, PITA, and RNAhybrid, to predict potential miR-130a target genes. miR-130a and its target genes were overexpressed or were knocked down by use of small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 guide RNA (gRNA). Selected gene mRNAs and their proteins, together with HCV replication in OR6 cells, HCV JFH1-infected Huh7.5.1 cells, and HCV JFH1-infected primary human hepatocytes (PHHs) and HBV replication in HepAD38 cells, HBV-infected NTCP-Huh7.5.1 cells, and HBV-infected PHHs, were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting, respectively. We selected 116 predicted target genes whose expression was related to viral pathogenesis or immunity for qPCR validation. Of these, the gene encoding pyruvate kinase in liver and red blood cell (PKLR) was confirmed to be regulated by miR-130a overexpression. miR-130a overexpression (via a mimic) knocked down PKLR mRNA and protein levels. A miR-130a inhibitor and gRNA increased PKLR expression, HCV replication, and HBV replication, while miR-130a gRNA and PKLR overexpression increased HCV and HBV replication. Supplemental pyruvate increased HCV and HBV replication and rescued the inhibition of HCV and HBV replication by the miR-130a mimic and PKLR knockdown. We concluded that miR-130a regulates HCV and HBV replication through its targeting of PKLR and subsequent pyruvate production. Our data provide novel insights into key metabolic enzymatic pathway steps regulated by miR-130a, including the steps involving PKLR and pyruvate, which are subverted by HCV and HBV replication. IMPORTANCE: We identified that miR-130a regulates the target gene PKLR and its subsequent effect on pyruvate production. Pyruvate is a key intermediate in several metabolic pathways, and we identified that pyruvate plays a key role in regulation of HCV and HBV replication. This previously unrecognized, miRNA-regulated antiviral mechanism has implications for the development of host-directed strategies to interrupt the viral life cycle and prevent establishment of persistent infection for HCV, HBV, and potentially other viral infections
First Principles Study of Double Boron Atoms Supported on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction
Electrocatalytic reduction of N2 provides a clean, sustainable way for NH3 production. Efficient catalysts thus play a key role but remain a long-term challenge. In this study, the catalytic activity of double boron supported on graphitic carbon nitride (g-C3N4) for a N2 reduction reaction (NRR) is explored by density functional theory (DFT) calculations. Our results show that double boron atoms embedded in g-C3N4 with coordination of four N atoms and two boron atoms exhibits an excellent NRR performance with negligible energy consumption for adding hydrogen to *N2, while a moderate ΔG of 0.58 eV for the formation of the second NH3 suggests this catalyst is a potential candidate for N2 fixation
Theoretical Screening of Single-Atom-Embedded MoSSe Nanosheets for Electrocatalytic N-2 Fixation
Theoretical Screening of Single-Atom-Embedded MoSSe Nanosheets for Electrocatalytic N-2 Fixatio
- …