26 research outputs found

    A moving contact line as a rheometer for nanometric interfacial layers

    Get PDF
    International audienceHow a liquid drop sits or moves depends on the physical and mechanical properties of the underlying substrate. This can be seen in the hysteresis of the contact angle made by a drop on a solid, which is known to originate from surface heterogeneities, and in the slowing of droplet motion on deformable solids. Here, we show how a moving contact line can be used to characterize a molecularly thin polymer layer on a solid. We find that the hysteresis depends on the polymerization index and can be optimized to be vanishingly small (o0.07°). The mechanical properties are quantitatively deduced from the microscopic contact angle, which is proportional to the speed of the contact line and the Rouse relaxation time divided by the layer thickness, in agreement with theory. Our work opens the prospect of measuring the properties of functionalized interfaces in microfluidic and biomedical applications that are otherwise inaccessible

    Dual gas and oil dispersions in water: production and stability of foamulsion

    Full text link
    International audienceIn this study we have investigated mixtures of oil droplets and gas bubbles and show that the oil can have two very different roles, either suppressing foaming or stabilising the foam. We have foamed emulsions made from two different oils (rapeseed and dodecane). For both oils the requirement for the creation of foamulsions is the presence of surfactant above a certain critical threshold, independent of the concentration of oil present. Although the foamability is comparable, the stability of the foamed emulsions is very different for the two oils studied. Varying a few simple parameters gives access to a wide range of behaviours, indeed three different stability regimes are observed: a regime with rapid collapse (within a few minutes), a regime where the oil has no impact, and a regime of high stability. This last regime occurs at high oil fraction in the emulsion, and the strong slowing down of ageing processes is due to the confinement of packed oil droplets between bubbles. We thus show that a simple system consisting of surfactant, water, oil and gas is very versatile and can be controlled by choosing the appropriate physical chemical parameters

    Quantifying the performances of SU-8 microfluidic devices: high liquid water tightness, long-term stability, and vacuum compatibility

    Full text link
    Despite several decades of development, microfluidics lacks a sealing material that can be readily fabricated, leak-tight under high liquid water pressure, stable over a long time, and vacuum compatible. In this paper, we report the performances of a micro-scale processable sealing material for nanofluidic/microfluidics chip fabrication, which enables us to achieve all these requirements. We observed that micrometric walls made of SU-8 photoresist, whose thickness can be as low as 35 μ\mum, exhibit water pressure leak-tightness from 1.5 bar up to 5.5 bar, no water porosity even after 2 months of aging, and are able to sustain under 10510^{-5} mbar vacuum. This sealing material is therefore reliable and versatile for building microchips, part of which must be isolated from liquid water under pressure or vacuum. Moreover, the fabrication process we propose does not require the use of aggressive chemicals or high-temperature or high-energy plasma treatment. It thus opens a new perspective to seal microchips where delicate surfaces such as nanomaterials are present

    Wetting on disordered surfaces at the nanometer scale

    Full text link
    Durant cette thèse, nous avons d'abord développé un dispositif expérimental permettant de mesurer la dynamique de l'angle de contact avec une précision record de 0,01° sur 7 décades de vitesses de la ligne triple, gamme jamais atteinte auparavant. Pour la première fois, la résolution numérique des équations de lubrification a permis de déduire l'angle de contact à l'échelle microscopique de ces mesures macroscopiques, découplant donc le problème hydrodynamique multi-échelles de la physique de la ligne de contact à petite échelle. Avec ces outils, nous avons montré qu'une pseudo-brosse - une couche nanométrique de polymères - peut complètement piloter la dynamique, en produisant des hystérésis les plus faibles jamais mesurées (<0,07° !) et des surdissipations massives provenant de la nature visco-élastique de la couche. Cette étude ouvre la voie à la nano-rhéologie, permettant de sonder la dynamique extrêmement rapide (~100 ns) de polymères confinés à l'échelle nanométrique. Grâce à un travail collaboratif fructueux, nous avons ensuite développé un modèle permettant de décrire quantitativement et de façon unifiée la dissipation hydrodynamique, l'hystérésis et l'activation thermique. Enfin, beaucoup d'efforts ont été fournis pour la fabrication de surfaces aux défauts nanométriques contrôlés en taille, forme et concentration. La dynamique s'est révélée insensible à cette échelle de désordre, la présence des défauts n'affectant que l'hystérésis. Ces résultats ont été interprétés semi-quantitativement avec des lois d'échelle, et la caractérisation complète des défauts devrait permettre à terme de développer des modèles plus quantitatifs.During this thesis, we first developed an experimental set-up to measure contact angle dynamics with a record precision of 0.01° over 7 decades of velocity of the triple line, a range never before attained. For the first time, numerically solving the lubrication equations has allowed us to deduce the contact angle at the microscopic scale from these macroscopic measurements, and thus enabled the multi-scale hydrodynamic problem to be disentangled from the physics of the contact line at small scales. With these tools we have shown that the dynamics can be completely piloted by a pseudo-brush -a nanometric layer of polymers-, producing the lowest ever reported hysteresis (<0.07°!) and giving rise to a huge source of dissipation originating from the viscoelasticity of the coating. This study points the way towards nano-rheology, to probe extremely fast dynamics (~100 ns) of polymers confined at the nano-scale. Thanks to a fruitful collaborative work, we then developed a model that provides a single quantitative framework to account for hydrodynamic dissipation, hysteresis and thermal activation. Finally, a great deal of effort has been made to produce nano-defects whose size, shape and density are controlled. The dynamics appears to be insensitive to this scale of disorder, and the presence of defects is observed to only modify the hysteresis. These results have been interpreted semi-quantitatively with scaling laws, and we expect that the complete characterization of the defects should eventually allow the development of more quantitative models

    The Influence of Mechanical Deformations on Surface Force Measurements

    Full text link
    International audienceSurface Force Balance (SFB) experiments have been performed in dry atmosphere and 1 across an ionic liquid, combining the analysis of the surface interactions and deformations, and 2 illustrate that the mechanical deformations of the surfaces have important consequences for the 3 force measurements. First, we find that the variation of the contact radius with the force across 4 the ionic liquid is well described only by the Derjaguin-Muller-Toporov (DMT) model, in contrast 5 with the usual consideration that SFB experiments are always in the Johnson-Kendall-Roberts 6 (JKR) regime. Secondly, we observe that mica does not only bend but can also experiences a 7 compression, of order 1 nm with 7 µm mica. We present a modified procedure to calibrate the mica 8 thickness in dry atmosphere, and we show that the structural forces measured across the ionic 9 liquid cannot be described by the usual exponentially decaying harmonic oscillation, but should 10 be considered as a convolution of the surface forces across the liquid and the mechanical response 11 of the confining solids. The measured structural force profile is fitted with a heuristic formulation 12 supposing that mica compression is dominant over liquid compression, and a scaling criterion is 13 proposed to distinguish situations where the solid deformation is negligible or dominant

    Mouillage de surfaces désordonnées à l'échelle nanométrique

    Full text link
    During this thesis, we first developed an experimental set-up to measure contact angle dynamics with a record precision of 0.01° over 7 decades of velocity of the triple line, a range never before attained. For the first time, numerically solving the lubrication equations has allowed us to deduce the contact angle at the microscopic scale from these macroscopic measurements, and thus enabled the multi-scale hydrodynamic problem to be disentangled from the physics of the contact line at small scales. With these tools we have shown that the dynamics can be completely piloted by a pseudo-brush -a nanometric layer of polymers-, producing the lowest ever reported hysteresis (<0.07°!) and giving rise to a huge source of dissipation originating from the viscoelasticity of the coating. This study points the way towards nano-rheology, to probe extremely fast dynamics (~100 ns) of polymers confined at the nano-scale. Thanks to a fruitful collaborative work, we then developed a model that provides a single quantitative framework to account for hydrodynamic dissipation, hysteresis and thermal activation. Finally, a great deal of effort has been made to produce nano-defects whose size, shape and density are controlled. The dynamics appears to be insensitive to this scale of disorder, and the presence of defects is observed to only modify the hysteresis. These results have been interpreted semi-quantitatively with scaling laws, and we expect that the complete characterization of the defects should eventually allow the development of more quantitative models.Durant cette thèse, nous avons d'abord développé un dispositif expérimental permettant de mesurer la dynamique de l'angle de contact avec une précision record de 0,01° sur 7 décades de vitesses de la ligne triple, gamme jamais atteinte auparavant. Pour la première fois, la résolution numérique des équations de lubrification a permis de déduire l'angle de contact à l'échelle microscopique de ces mesures macroscopiques, découplant donc le problème hydrodynamique multi-échelles de la physique de la ligne de contact à petite échelle. Avec ces outils, nous avons montré qu'une pseudo-brosse - une couche nanométrique de polymères - peut complètement piloter la dynamique, en produisant des hystérésis les plus faibles jamais mesurées (<0,07° !) et des surdissipations massives provenant de la nature visco-élastique de la couche. Cette étude ouvre la voie à la nano-rhéologie, permettant de sonder la dynamique extrêmement rapide (~100 ns) de polymères confinés à l'échelle nanométrique. Grâce à un travail collaboratif fructueux, nous avons ensuite développé un modèle permettant de décrire quantitativement et de façon unifiée la dissipation hydrodynamique, l'hystérésis et l'activation thermique. Enfin, beaucoup d'efforts ont été fournis pour la fabrication de surfaces aux défauts nanométriques contrôlés en taille, forme et concentration. La dynamique s'est révélée insensible à cette échelle de désordre, la présence des défauts n'affectant que l'hystérésis. Ces résultats ont été interprétés semi-quantitativement avec des lois d'échelle, et la caractérisation complète des défauts devrait permettre à terme de développer des modèles plus quantitatifs

    Are Ionic Liquids Good Boundary Lubricants? A Molecular Perspective

    Full text link
    The application of ionic liquids as lubricants has attracted substantial interest over the past decade and this has produced a rich literature. The aim of this review is to summarize the main findings about frictional behavior of ionic liquids in the boundary lubrication regime. We first recall why the unusual properties of ionic liquids make them very promising lubricants, and the molecular mechanisms at the origin of their lubricating behavior. We then point out the main challenges to be overcome in order to optimise ionic liquid lubricant performance for common applications. We finally discuss their use in the context of electroactive lubrication

    Surface Forces and Structure in a Water-in-Salt Electrolyte

    Full text link
    International audienceWater-in-salt electrolytes are a fascinating new class of highly concentrated aqueous solutions with wide electrochemical stability windows that make them viable as aqueous battery electrolytes. However, the high ion concentration of water-in-salt electrolytes means that these systems are poorly understood when compared to more dilute electrolyte solutions. Here, we present direct surface force measurements across thin films of a water-in-salt electrolyte at several concentrations. We find that the electrolyte adopts a layered structure at charged interfaces composed of a nanostructure of hydrated cation and non-aqueous anion-rich domains. These observations will aid in the interpretation of capacitance and double layer behaviour of water-in-salt electrolytes with consequences for their use in energy storage devices. Electrolytes are ubiquitous: they form the planet's oceans, they exist within all living cells, and they are critical to the function of many modern technologies. In the dilute regime, electrolytes are well understood by considering the established ideal Debye-Hücke

    Are buckminsterfullerenes molecular ball bearings?

    Full text link
    Buckminsterfullerenes (C60) are near-spherical molecules, which freely rotate at room temperature in the solid state and when dissolved in solution. An intriguing question arises as to whether C60 molecules can act as “molecular ball bearings,” that is, preventing direct contact between two solid surfaces while simultaneously dissipating shear stress through fast rotation. To explore this, we performed measurements of friction across a solution of C60 in the boundary lubrication regime. High-resolution shear and normal force measurements between mica sheets separated by C60 solution were made using a surface force balance to provide single-asperity contact and sub-nanometer resolution in film thickness. We find that, even at a small volume fraction, C60 forms a solidlike amorphous boundary film sustaining a high normal load, suggesting that this system undergoes a glass transition under confinement. The C60 film gives rise to a low friction coefficient up to moderate applied loads, and we discuss the possible relevance of the ball-bearing effect at the molecular scale
    corecore