4 research outputs found

    Accumbens Cholinergic Interneurons Mediate Cue-Induced Nicotine Seeking and Associated Glutamatergic Plasticity

    Get PDF
    Nicotine, the primary addictive substance in tobacco, is widely abused. Relapse to cues associated with nicotine results in increased glutamate release within nucleus accumbens core (NAcore), modifying synaptic plasticity of medium spiny neurons (MSNs), which contributes to reinstatement of nicotine seeking. However, the role of cholinergic interneurons (ChIs) within the NAcore in mediating these neurobehavioral processes is unknown. ChIs represent less than 1% of the accumbens neuronal population and are activated during drug seeking and reward-predicting events. Thus, we hypothesized that ChIs may play a significant role in mediating glutamatergic plasticity that underlies nicotine-seeking behavior. Using chemogenetics in transgenic rats expressing Cre under the control of the choline acetyltransferase (ChAT) promoter, ChIs were bidirectionally manipulated before cue-induced reinstatement. Following nicotine self-administration and extinction, ChIs were activated or inhibited before a cue reinstatement session. Following reinstatement, whole-cell electrophysiology from NAcore MSNs was used to assess changes in plasticity, measured via AMPA/NMDA (A/N) ratios. Chemogenetic inhibition of ChIs inhibited cued nicotine seeking and resulted in decreased A/N, relative to control animals, whereas activation of ChIs was unaltered, demonstrating that ChI inhibition may modulate plasticity underlying cue-induced nicotine seeking. These results demonstrate that ChI neurons play an important role in mediating cue-induced nicotine reinstatement and underlying synaptic plasticity within the NAcore

    Effects of repeated binge intake of the pyrovalerone cathinone derivative 3,4-methylenedioxypyrovalerone on prefrontal cytokine levels in rats – a preliminary study

    Get PDF
    Drugs of abuse activate neuroimmune signaling in addiction-related regions of the brain, including the prefrontal cortex (PFC) which mediates executive control, attention, and behavioral inhibition. Traditional psychostimulants including methamphetamine and cocaine are known to induce PFC inflammation, yet the effects of synthetic cathinone derivatives are largely unexplored. In this study, we examined the ability of repeated binge-like intake of the pyrovalerone cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV) to alter cytokine profiles in the PFC. Male and female rats were allowed to intravenously self-administer MDPV (0.05 mg/kg/infusion) or saline as a control under conditions of prolonged binge-like access, consisting of three 96 h periods of drug access interspersed with 72 h of forced abstinence. Three weeks following cessation of drug availability, PFC cytokine levels were assessed using antibody arrays. Employing the unsupervised clustering and regression analysis tool CytoMod, a single module of co-signaling cytokines associated with MDPV intake regardless of sex was identified. With regards to specific cytokines, MDPV intake was positively associated with PFC levels of VCAM-1/CD106 and negatively associated with levels of Flt-3 ligand. These findings indicate that prolonged MDPV intake causes changes in PFC cytokine levels that persist into abstinence; however, the functional ramifications of these changes remain to be fully elucidated

    Methamphetamine and the Synthetic Cathinone 3,4-Methylenedioxypyrovalerone (MDPV) Produce Persistent Effects on Prefrontal and Striatal Microglial Morphology and Neuroimmune Signaling Following Repeated Binge-like Intake in Male and Female Rats

    No full text
    Psychostimulants alter cellular morphology and activate neuroimmune signaling in a number of brain regions, yet few prior studies have investigated their persistence beyond acute abstinence or following high levels of voluntary drug intake. In this study, we examined the effects of the repeated binge-like self-administration (96 h/week for 3 weeks) of methamphetamine (METH) and 21 days of abstinence in female and male rats on changes in cell density, morphology, and cytokine levels in two addiction-related brain regions—the prefrontal cortex (PFC) and dorsal striatum (DStr). We also examined the effects of similar patterns of intake of the cocaine-like synthetic cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV) or saline as a control. Robust levels of METH and MDPV intake (~500–1000 infusions per 96 h period) were observed in both sexes. We observed no changes in astrocyte or neuron density in either region, but decreases in dendritic spine densities were observed in PFC pyramidal and DStr medium spiny neurons. The microglial cell density was decreased in the PFC of METH self-administering animals, accompanied by evidence of microglial apoptosis. Changes in microglial morphology (e.g., decreased territorial volume and ramification and increased cell soma volume) were also observed, indicative of an inflammatory-like state. Multiplex analyses of PFC and DStr cytokine content revealed elevated levels of various interleukins and chemokines only in METH self-administering animals, with region- and sex-dependent effects. Our findings suggest that voluntary binge-like METH or MDPV intake induces similar cellular perturbations in the brain, but they are divergent neuroimmune responses that persist beyond the initial abstinence phase
    corecore