7 research outputs found

    Development of a microfluidic SNP assay for lineage discrimination in the endangered hazel dormouse

    Full text link
    Abstract The application of Genotyping-by-Sequencing (GBS) approaches is often restricted in wildlife monitoring and conservation genetics, as those fields often rely on noninvasively collected samples with low DNA content. Here we selected a subset of informative single-nucleotide polymorphisms (SNPs) from genome-wide data for lineage discrimination of a locally endangered Eurasian rodent, the hazel dormouse (Muscardinus avellanarius), and designed a microfluidic 96 SNP genotyping assay suitable for noninvasively collected samples. Analyses of 43 samples from different European countries confirmed successful discrimination of the Eastern and Western lineage and local substructure within those lineages, proving the suitability of the developed panel for identifying evolutionary significant units and conservation units. Application with 94 hair and scat samples collected in a recent monitoring study on the hazel dormouse in Southern Germany resulted in >99.5% amplification success showing the applicability of the new tool in genetic wildlife monitoring and conservation studies

    Differences in Intrinsic Gray-Matter Connectivity and their genomic underpinnings in Autism Spectrum Disorder

    Get PDF

    Genotyping-by-sequencing based SNP discovery in a non-model rodent, the endangered hazel dormouse

    No full text
    The hazel dormouse Muscardinus avellanarius presents an exemplary non-model species that is both locally threatened and whose genetic status is not fully understood owing to insufficient resolution of the currently available molecular tools. We performed normalized Genotyping-by-Sequencing (nGBS) on 48 hazel dormouse samples collected across the species European distribution, aiming at discovering useful single nucleotide polymorphism (SNP) markers for the assessment of population structure and genomic diversity. The analyses of > 24,000 SNPs showed a high divergence between the Eastern and Western lineage of the species with high rates of SNP allele fixation, consistent with previous studies suggesting the divergence of lineages occurred over 2 mya. These results indicate that investigating inter-lineage as well as within-lineage genetic composition will be a conclusive approach for identifying conservation strategies in the future. Results presented here indicate the highest genetic divergence in the Italian and Lithuanian populations. We document how nGBS allows the discovery of SNPs that can characterize patterns of genetic variation at multiple spatial scales in a non-model organism. We document how nGBS allows the discovery of SNPs that can characterize patterns of genetic variation at multiple spatial scales in a non-model organism, potentially informing monitoring and conservation strategies

    Differences in Intrinsic Gray Matter Connectivity and Their Genomic Underpinnings in Autism Spectrum Disorder

    No full text
    International audienceBackgroundAutism is a heterogeneous neurodevelopmental condition accompanied by differences in brain connectivity. Structural connectivity in autism has mainly been investigated within the white matter. However, many genetic variants associated with autism highlight genes related to synaptogenesis and axonal guidance, thus also implicating differences in intrinsic (i.e., gray matter) connections in autism. Intrinsic connections may be assessed in vivo via so-called intrinsic global and local wiring costs.MethodsHere, we examined intrinsic global and local wiring costs in the brain of 359 individuals with autism and 279 healthy control participants ages 6 to 30 years from the EU-AIMS LEAP (Longitudinal European Autism Project). FreeSurfer was used to derive surface mesh representations to compute the estimated length of connections required to wire the brain within the gray matter. Vertexwise between-group differences were assessed using a general linear model. A gene expression decoding analysis based on the Allen Human Brain Atlas was performed to link neuroanatomical differences to putative underpinnings.ResultsGroup differences in global and local wiring costs were predominantly observed in medial and lateral prefrontal brain regions, in inferior temporal regions, and at the left temporoparietal junction. The resulting neuroanatomical patterns were enriched for genes that had been previously implicated in the etiology of autism at genetic and transcriptomic levels.ConclusionsBased on intrinsic gray matter connectivity, the current study investigated the complex neuroanatomy of autism and linked between-group differences to putative genomic and/or molecular mechanisms to parse the heterogeneity of autism and provide targets for future subgrouping approaches

    Differences in Intrinsic Gray Matter Connectivity and Their Genomic Underpinnings in Autism Spectrum Disorder

    Full text link
    Background: Autism is a heterogeneous neurodevelopmental condition accompanied by differences in brain connectivity. Structural connectivity in autism has mainly been investigated within the white matter. However, many genetic variants associated with autism highlight genes related to synaptogenesis and axonal guidance, thus also implicating differences in intrinsic (i.e., gray matter) connections in autism. Intrinsic connections may be assessed in vivo via so-called intrinsic global and local wiring costs. Methods: Here, we examined intrinsic global and local wiring costs in the brain of 359 individuals with autism and 279 healthy control participants ages 6 to 30 years from the EU-AIMS LEAP (Longitudinal European Autism Project). FreeSurfer was used to derive surface mesh representations to compute the estimated length of connections required to wire the brain within the gray matter. Vertexwise between-group differences were assessed using a general linear model. A gene expression decoding analysis based on the Allen Human Brain Atlas was performed to link neuroanatomical differences to putative underpinnings. Results: Group differences in global and local wiring costs were predominantly observed in medial and lateral prefrontal brain regions, in inferior temporal regions, and at the left temporoparietal junction. The resulting neuroanatomical patterns were enriched for genes that had been previously implicated in the etiology of autism at genetic and transcriptomic levels. Conclusions: Based on intrinsic gray matter connectivity, the current study investigated the complex neuroanatomy of autism and linked between-group differences to putative genomic and/or molecular mechanisms to parse the heterogeneity of autism and provide targets for future subgrouping approaches

    The neuroanatomical substrates of autism and ADHD and their link to putative genomic underpinnings

    Get PDF
    Background: Autism spectrum disorders (ASD) are neurodevelopmental conditions accompanied by differences in brain development. Neuroanatomical differences in autism are variable across individuals and likely underpin distinct clinical phenotypes. To parse heterogeneity, it is essential to establish how the neurobiology of ASD is modulated by differences associated with co-occurring conditions, such as attention-deficit/hyperactivity disorder (ADHD). This study aimed to (1) investigate between-group differences in autistic individuals with and without co-occurring ADHD, and to (2) link these variances to putative genomic underpinnings. Methods: We examined differences in cortical thickness (CT) and surface area (SA) and their genomic associations in a sample of 533 individuals from the Longitudinal European Autism Project. Using a general linear model including main effects of autism and ADHD, and an ASD-by-ADHD interaction, we examined to which degree ADHD modulates the autism-related neuroanatomy. Further, leveraging the spatial gene expression data of the Allen Human Brain Atlas, we identified genes whose spatial expression patterns resemble our neuroimaging findings. Results: In addition to significant main effects for ASD and ADHD in fronto-temporal, limbic, and occipital regions, we observed a significant ASD-by-ADHD interaction in the left precentral gyrus and the right frontal gyrus for measures of CT and SA, respectively. Moreover, individuals with ASD + ADHD differed in CT to those without. Both main effects and the interaction were enriched for ASD—but not for ADHD-related genes. Limitations: Although we employed a multicenter design to overcome single-site recruitment limitations, our sample size of N = 25 individuals in the ADHD only group is relatively small compared to the other subgroups, which limits the generalizability of the results. Also, we assigned subjects into ADHD positive groupings according to the DSM-5 rating scale. While this is sufficient for obtaining a research diagnosis of ADHD, our approach did not take into account for how long the symptoms have been present, which is typically considered when assessing ADHD in the clinical setting. Conclusion: Thus, our findings suggest that the neuroanatomy of ASD is significantly modulated by ADHD, and that autistic individuals with co-occurring ADHD may have specific neuroanatomical underpinnings potentially mediated by atypical gene expression.ISSN:2040-239
    corecore