27 research outputs found

    Ginsenoside Rb1 ameliorates the abnormal hepatic glucose metabolism by activating STAT3 in T2DM mice

    No full text
    Ginsenoside Rb1, a major bioactive component of Panax ginseng C. A. Mey., exerts beneficial effects on type 2 diabetes mellitus (T2DM), but its underlying mechanism is unclear. STAT3 is a key factor regulating energy metabolism. Herein, we tested whether Rb1 regulates STAT3-controlled hepatic glucose metabolism to ameliorate T2DM. Rb1 ameliorated abnormal hepatic glucose metabolism, insulin resistance, and liver steatosis in T2DM mice. Hepatic STAT3 phosphorylation was decreased in T2DM and increased after Rb1 treatment. Moreover, Rb1 reversed the decreased expressions of glycolytic enzymes and the increased expressions of gluconeogenic enzymes in T2DM. STAT3 activation increased the expressions of glycolytic enzymes and decreased the expressions of gluconeogenic enzymes in vitro, and vice versa. Further, STAT3 inhibition reversed the changes of these enzymes induced by Rb1 in insulin-resistant cells. Taken together, Rb1 ameliorated abnormal hepatic glucose metabolism in T2DM in a STAT3-dependent manner, which provides experimental bases for Rb1 in treating T2DM

    Protein 2B of Coxsackievirus B3 Induces Autophagy Relying on Its Transmembrane Hydrophobic Sequences

    No full text
    Coxsackievirus B (CVB) belongs to Enterovirus genus within the Picornaviridae family, and it is one of the most common causative pathogens of viral myocarditis in young adults. The pathogenesis of myocarditis caused by CVB has not been completely elucidated. In CVB infection, autophagy is manipulated to facilitate viral replication. Here we report that protein 2B, one of the non-structural proteins of CVB3, possesses autophagy-inducing capability. The autophagy-inducing motif of protein 2B was identified by the generation of truncated 2B and site-directed mutagenesis. The expression of 2B alone was sufficient to induce the formation of autophagosomes in HeLa cells, while truncated 2B containing the two hydrophobic regions of the protein also induced autophagy. In addition, we demonstrated that a single amino acid substitution (56V→A) in the stem loop in between the two hydrophobic regions of protein 2B abolished the formation of autophagosomes. Moreover, we found that 2B and truncated 2B with autophagy-inducting capability were co-localized with LC3-II. This study indicates that protein 2B relies on its transmembrane hydrophobic regions to induce the formation of autophagosomes, while 56 valine residue in the stem loop of protein 2B might exert critical structural influence on its two hydrophobic regions. These results may provide new insight for understanding the molecular mechanism of autophagy triggered by CVB infection

    The traditional Chinese medicine formula Fufang-Zhenzhu-Tiaozhi protects myocardia from injury in diabetic minipigs with coronary heart disease

    No full text
    Background and purpose: Diabetes mellitus (DM) is a major risk factor for coronary heart disease (CHD). Previous research has reported that the Fufang-Zhenzhu-Tiaozhi (FTZ) formula has obvious effects on the treatment of dyslipidemia and hyperglycemia. In the present study, we intended to establish a convenient DM-CHD model in minipigs and investigated the protective effect of FTZ against myocardial injury and its mechanism. Methods: The DM-CHD model was established by a high-fat/high-sucrose/high-cholesterol diet (HFSCD) combined with balloon injury in the coronary artery. Subsequently, sixteen Wuzhishan minipigs were assigned to three groups: control group, model group, and FTZ group. The model group and FTZ group were given a HFSCD, while the control group was given a normal diet (ND). FTZ was given with meals in the FTZ group. During this time, biochemical parameters, such as total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein (HDL-C), and fasting blood glucose (FBG), were measured by using testing kits. Insulin (INS) was determined by ELISA, and the homeostasis model assessment index of insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance levels. After FTZ administration, the plasma levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), and cardiac troponin I (cTnI) were measured by using ELISA kits to evaluate myocardial injury. Coronary artery stenosis was analyzed by angiographic and HE staining. Myocardial ischemia was assayed with electrocardiogram (ECG). Moreover, cytokines, including interleukin-6 (IL-6), hypersensitive C-reactive protein (hs-CRP), and tumor necrosis factor-alpha (TNF-α), were measured by ELISA kits to assess inflammation. The myocardial tissue was collected, and the pathological morphology was observed by transmission electron microscopy (TEM), HE staining, and Masson staining. Western blots were used to detect the expression of PI3K, AKT, p-AKT, p-NF-κB, and NF-κB. Results: A DM-CHD model in minipigs with glucose-lipid metabolism disorder, coronary artery incrassation and myocardial damage was successfully established through balloon injury in the coronary artery combined with HFSCD. FTZ effectively inhibited coronary artery incrassation and protected the myocardium against injury in DM-CHD minipigs. FTZ decreased proinflammatory cytokine levels and upregulated the protein expression of the PI3K/Akt pathway in the myocardium. Conclusions: A novel DM-CHD model in minipigs was successfully established through balloon injury in the coronary artery combined with HFSCD. FTZ has a protective effect against myocardial injury in DM-CHD by inhibiting inflammation and activating the PI3K/AKT signaling pathway

    Curcumin inhibits the replication of enterovirus 71 in vitro

    Get PDF
    AbstractHuman enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD) in children. The epidemic of HFMD has been a public health problem in Asia-Pacific region for decades, and no vaccine and effective antiviral medicine are available. Curcumin has been used as a traditional medicine for centuries to treat a diversity of disorders including viral infections. In this study, we demonstrated that curcumin showed potent antiviral effect again EV71. In Vero cells infected with EV71, the addition of curcumin significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the overall production of viral progeny. Similar with the previous reports, curcumin reduced the production of ROS induced by viral infection. However, the antioxidant property of curcumin did not contribute to its antiviral activity, since N-acetyl-l-cysteine, the potent antioxidant failed to suppress viral replication. This study also showed that extracellular signal-regulated kinase (ERK) was activated by either viral infection or curcumin treatment, but the activated ERK did not interfere with the antiviral effect of curcumin, indicating ERK is not involved in the antiviral mechanism of curcumin. Unlike the previous reports that curcumin inhibited protein degradation through ubiquitin–proteasome system (UPS), we found that curcumin had no impact on UPS in control cells. However, curcumin did reduce the activity of proteasomes which was increased by viral infection. In addition, the accumulation of the short-lived proteins, p53 and p21, was increased by the treatment of curcumin in EV71-infected cells. We further probed the antiviral mechanism of curcumin by examining the expression of GBF1 and PI4KB, both of which are required for the formation of viral replication complex. We found that curcumin significantly reduced the level of both proteins. Moreover, the decreased expression of either GBF1 or PI4KB by the application of siRNAs was sufficient to suppress viral replication. We also demonstrated that curcumin showed anti-apoptotic activity at the early stage of viral infection. The results of this study provide solid evidence that curcumin has potent anti-EV71 activity. Whether or not the down-regulated GBF1 and PI4KB by curcumin contribute to its antiviral effect needs further studies

    The Chinese herbal medicine Fufang Zhenzhu Tiaozhi ameliorates diabetic cardiomyopathy by regulating cardiac abnormal lipid metabolism and mitochondrial dynamics in diabetic mice

    No full text
    Diabetic cardiomyopathy (DCM) is an important complication leading to the death of patients with diabetes, but there is no effective strategy for clinical treatments. Fufang Zhenzhu Tiaozhi (FTZ) is a patent medicine that is a traditional Chinese medicine compound preparation with comprehensive effects for the prevention and treatment of glycolipid metabolic diseases under the guidance of “modulating liver, starting pivot and cleaning turbidity”. FTZ was proposed by Professor Guo Jiao and is used for the clinical treatment of hyperlipidemia. This study was designed to explore the regulatory mechanisms of FTZ on heart lipid metabolism dysfunction and mitochondrial dynamics disorder in mice with DCM, and it provides a theoretical basis for the myocardial protective effect of FTZ in diabetes. In this study, we demonstrated that FTZ protected heart function in DCM mice and downregulated the overexpression of free fatty acids (FFAs) uptake-related proteins cluster of differentiation 36 (CD36), fatty acid binding protein 3 (FABP3) and carnitine palmitoyl transferase 1 (CPT1). Moreover, FTZ treatment showed a regulatory effect on mitochondrial dynamics by inhibiting mitochondrial fission and promoting mitochondrial fusion. We also identified in vitro that FTZ could restore lipid metabolism-related proteins, mitochondrial dynamics-related proteins and mitochondrial energy metabolism in PA-treated cardiomyocytes. Our study indicated that FTZ improves the cardiac function of diabetic mice by attenuating the increase in fasting blood glucose levels, inhibiting the decrease in body weight, alleviating disordered lipid metabolism, and restoring mitochondrial dynamics and myocardial apoptosis in diabetic mouse hearts
    corecore