364 research outputs found

    Computational advances in gravitational microlensing: a comparison of CPU, GPU, and parallel, large data codes

    Full text link
    To assess how future progress in gravitational microlensing computation at high optical depth will rely on both hardware and software solutions, we compare a direct inverse ray-shooting code implemented on a graphics processing unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU, and a recent implementation of a parallel tree code suitable for a CPU-based cluster supercomputer. We examine the accuracy of the tree codes through comparison with a direct code over a much wider range of parameter space than has been feasible before. We demonstrate that all three codes present comparable accuracy, and choice of approach depends on considerations relating to the scale and nature of the microlensing problem under investigation. On current hardware, there is little difference in the processing speed of the single-core CPU tree code and the GPU direct code, however the recent plateau in single-core CPU speeds means the existing tree code is no longer able to take advantage of Moore's law-like increases in processing speed. Instead, we anticipate a rapid increase in GPU capabilities in the next few years, which is advantageous to the direct code. We suggest that progress in other areas of astrophysical computation may benefit from a transition to GPUs through the use of "brute force" algorithms, rather than attempting to port the current best solution directly to a GPU language -- for certain classes of problems, the simple implementation on GPUs may already be no worse than an optimised single-core CPU version.Comment: 11 pages, 4 figures, accepted for publication in New Astronom

    Radiofrequency ablation of ventricular tachycardia in Anderson–Fabry disease : a case series

    Get PDF
    Background Cardiac involvement in Anderson–Fabry disease (AFD) can lead to arrhythmia, including ventricular tachycardia (VT). The literature on radiofrequency ablation (RFA) for the treatment of VT in AFD disease is limited. Case summary We discuss RFA of drug-refractory VT electrical storm in three males with AFD. The first patient (53 years old) had extensive involvement of the inferolateral left ventricle (LV) demonstrated with cardiac magnetic resonance imaging (CMRI), with a left ventricular ejection fraction (LVEF) of 35%. Two VT ablation procedures were performed. At the first procedure, the inferobasal endocardial LV was ablated. Furthermore, VT prompted a second ablation, where epicardial and endocardial sites were ablated. The acute arrhythmia burden was controlled but he died 4 months later despite appropriate implantable cardioverter-defibrillator therapies for VT. The second patient (67 years old) had full-thickness inferolateral involvement demonstrated with CMRI and LVEF of 45%. RFA of several endocardial left ventricular sites was performed. Over a 3-year follow-up, only brief non-sustained VT was identified, but he subsequently died of cardiac failure. Our third patient (69 years old), had an LVEF of 35%. He had RFA of endocardial left ventricular apical disease, but died 3 weeks later of cardiac failure. Discussion RFA of drug-refractory VT in AFD is feasible using standard electrophysiological mapping and ablation techniques, although the added clinical benefit is of questionable value. VT storm in the context of AFD may be a marker of end-stage disease

    Future Directions in Parity Violation: From Quarks to the Cosmos

    Get PDF
    I discuss the prospects for future studies of parity-violating (PV) interactions at low energies and the insights they might provide about open questions in the Standard Model as well as physics that lies beyond it. I cover four types of parity-violating observables: PV electron scattering; PV hadronic interactions; PV correlations in weak decays; and searches for the permanent electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions, Milos, Greece (May, 2006); 10 page

    Telecommunication wavelength GaAsBi light emitting diodes

    Get PDF
    GaAsBi light emitting diodes containing ∼6% Bi are grown on GaAs substrates. Good room-temperature electroluminescence spectra are obtained at current densities as low as 8 Acm − 2. Measurements of the integrated emitted luminescence suggest that there is a continuum of localised Bi states extending up to 75 meV into the bandgap, which is in good agreement with previous photoluminescence studies. X-ray diffraction analysis shows that strain relaxation has probably occurred in the thicker samples grown in this study

    Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry

    Get PDF
    We present a general methodology for determining the gamma-ray flux from annihilation of dark matter particles in Milky Way satellite galaxies, focusing on two promising satellites as examples: Segue 1 and Draco. We use the SuperBayeS code to explore the best-fitting regions of the Constrained Minimal Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC analysis of the dark matter halo properties of the satellites using published radial velocities. We present a formalism for determining the boost from halo substructure in these galaxies and show that its value depends strongly on the extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down to the minimum possible mass. We show that the preferred region for this minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6 solar masses. For the boost model where the observed power-law c(M) relation is extrapolated down to the minimum halo mass we find average boosts of about 20, while the Bullock et al (2001) c(M) model results in boosts of order unity. We estimate that for the power-law c(M) boost model and photon energies greater than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark matter annihilation signal from Draco with signal-to-noise greater than 3 after about 5 years of observation

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore