364 research outputs found
Computational advances in gravitational microlensing: a comparison of CPU, GPU, and parallel, large data codes
To assess how future progress in gravitational microlensing computation at
high optical depth will rely on both hardware and software solutions, we
compare a direct inverse ray-shooting code implemented on a graphics processing
unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU,
and a recent implementation of a parallel tree code suitable for a CPU-based
cluster supercomputer. We examine the accuracy of the tree codes through
comparison with a direct code over a much wider range of parameter space than
has been feasible before. We demonstrate that all three codes present
comparable accuracy, and choice of approach depends on considerations relating
to the scale and nature of the microlensing problem under investigation. On
current hardware, there is little difference in the processing speed of the
single-core CPU tree code and the GPU direct code, however the recent plateau
in single-core CPU speeds means the existing tree code is no longer able to
take advantage of Moore's law-like increases in processing speed. Instead, we
anticipate a rapid increase in GPU capabilities in the next few years, which is
advantageous to the direct code. We suggest that progress in other areas of
astrophysical computation may benefit from a transition to GPUs through the use
of "brute force" algorithms, rather than attempting to port the current best
solution directly to a GPU language -- for certain classes of problems, the
simple implementation on GPUs may already be no worse than an optimised
single-core CPU version.Comment: 11 pages, 4 figures, accepted for publication in New Astronom
Radiofrequency ablation of ventricular tachycardia in Anderson–Fabry disease : a case series
Background
Cardiac involvement in Anderson–Fabry disease (AFD) can lead to arrhythmia, including ventricular tachycardia (VT). The literature on radiofrequency ablation (RFA) for the treatment of VT in AFD disease is limited.
Case summary
We discuss RFA of drug-refractory VT electrical storm in three males with AFD. The first patient (53 years old) had extensive involvement of the inferolateral left ventricle (LV) demonstrated with cardiac magnetic resonance imaging (CMRI), with a left ventricular ejection fraction (LVEF) of 35%. Two VT ablation procedures were performed. At the first procedure, the inferobasal endocardial LV was ablated. Furthermore, VT prompted a second ablation, where epicardial and endocardial sites were ablated. The acute arrhythmia burden was controlled but he died 4 months later despite appropriate implantable cardioverter-defibrillator therapies for VT. The second patient (67 years old) had full-thickness inferolateral involvement demonstrated with CMRI and LVEF of 45%. RFA of several endocardial left ventricular sites was performed. Over a 3-year follow-up, only brief non-sustained VT was identified, but he subsequently died of cardiac failure. Our third patient (69 years old), had an LVEF of 35%. He had RFA of endocardial left ventricular apical disease, but died 3 weeks later of cardiac failure.
Discussion
RFA of drug-refractory VT in AFD is feasible using standard electrophysiological mapping and ablation techniques, although the added clinical benefit is of questionable value. VT storm in the context of AFD may be a marker of end-stage disease
Future Directions in Parity Violation: From Quarks to the Cosmos
I discuss the prospects for future studies of parity-violating (PV)
interactions at low energies and the insights they might provide about open
questions in the Standard Model as well as physics that lies beyond it. I cover
four types of parity-violating observables: PV electron scattering; PV hadronic
interactions; PV correlations in weak decays; and searches for the permanent
electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions,
Milos, Greece (May, 2006); 10 page
Telecommunication wavelength GaAsBi light emitting diodes
GaAsBi light emitting diodes containing ∼6% Bi are grown on GaAs substrates. Good room-temperature electroluminescence spectra are obtained at current densities as low as 8 Acm − 2. Measurements of the integrated emitted luminescence suggest that there is a continuum of localised Bi states extending up to 75 meV into the bandgap, which is in good agreement with previous photoluminescence studies. X-ray diffraction analysis shows that strain relaxation has probably occurred in the thicker samples grown in this study
Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry
We present a general methodology for determining the gamma-ray flux from
annihilation of dark matter particles in Milky Way satellite galaxies, focusing
on two promising satellites as examples: Segue 1 and Draco. We use the
SuperBayeS code to explore the best-fitting regions of the Constrained Minimal
Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC
analysis of the dark matter halo properties of the satellites using published
radial velocities. We present a formalism for determining the boost from halo
substructure in these galaxies and show that its value depends strongly on the
extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down
to the minimum possible mass. We show that the preferred region for this
minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6
solar masses. For the boost model where the observed power-law c(M) relation is
extrapolated down to the minimum halo mass we find average boosts of about 20,
while the Bullock et al (2001) c(M) model results in boosts of order unity. We
estimate that for the power-law c(M) boost model and photon energies greater
than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark
matter annihilation signal from Draco with signal-to-noise greater than 3 after
about 5 years of observation
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- …