71,784 research outputs found
Solid propellant rocket motor and method of making same
A method is described for making a solid propellant rocket motor having a specific concavity formed within the fuel charge. A mandrel with an aperature wider than that of the casing is inserted within the motor casing and a solidifiable propellant cast above the mandrel. The mandrel is removed after the propellant is cured
The high-energy gamma-ray light curve of PSR B1259 -63
The high-energy gamma-ray light curve of the binary system PSR B1259 -63, is
computed using the approach that successfully predicted the spectrum at
periastron. The simultaneous INTEGRAL and H.E.S.S. spectra taken 16 days after
periastron currently permit both a model with dominant radiative losses, high
pulsar wind Lorentz factor and modest efficiency as well as one with dominant
adiabatic losses, a slower wind and higher efficiency. In this paper we shown
how the long-term light curve may help to lift this degeneracy.Comment: 4 pages, to appear in proceedings of: Astrophysical Sources of High
Energy Particles and Radiation, Torun (2005
Improving CMB non-Gaussianity estimators using tracers of local structure
Local non-Gaussianity causes correlations between large scale perturbation
modes and the small scale power. The large-scale CMB signal has contributions
from the integrated Sachs Wolfe (ISW) effect, which does not correlate with the
small scale power. If this ISW contribution can be removed, the sensitivity to
local non-Gaussianity is improved. Gravitational lensing and galaxy counts can
be used to trace the ISW contribution; in particular we show that the CMB
lensing potential is highly correlated with the ISW signal. We construct a
nearly-optimal estimator for the local non-Gaussianity parameter \fnl and
investigate to what extent we can use this to decrease the variance on
{\fnl}. We show that the variance can be decreased by up to at Planck
sensitivity using galaxy counts. CMB lensing is a good bias-independent ISW
tracer for future more sensitive observations, though the fractional decrease
in variance is small if good polarization data is also available.Comment: 8 pages, 3 figures. Comments welcom
Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddlepoints
Contrary to naive expectation, diluting the stellar component of the lensing
galaxy in a highly magnified system with smoothly distributed ``dark'' matter
increases rather than decreases the microlensing fluctuations caused by the
remaining stars. For a bright pair of images straddling a critical curve, the
saddlepoint (of the arrival time surface) is much more strongly affected than
the associated minimum. With a mass ratio of smooth matter to microlensing
matter of 4:1, a saddlepoint with a macro-magnification of mu = 9.5 will spend
half of its time more than a magnitude fainter than predicted. The anomalous
flux ratio observed for the close pair of images in MG0414+0534 is a factor of
five more likely than computed by Witt, Mao and Schechter if the smooth matter
fraction is as high as 93%. The magnification probability histograms for
macro-images exhibit distinctly different structure that varies with the smooth
matter content, providing a handle on the smooth matter fraction. Enhanced
fluctuations can manifest themselves either in the temporal variations of a
lightcurve or as flux ratio anomalies in a single epoch snapshot of a multiply
imaged system. While the millilensing simulations of Metcalf and Madau also
give larger anomalies for saddlepoints than for minima, the effect appears to
be less dramatic for extended subhalos than for point masses. Morever,
microlensing is distinguishable from millilensing because it will produce
noticeable changes in the magnification on a time scale of a decade or less.Comment: As accepted for publication in ApJ. 17 pages. Substantial revisions
include a discussion of constant M/L models and the calculation of a
"photometric" dark matter fraction for MG0414+053
Correlations between the interfacial chemistry and current-voltage behavior of n-GaAs/liquid junctions
Correlations between the surface chemistry of etched, (100) oriented n-GaAs electrodes and their subsequent photoelectrochemical behavior have been probed by high-resolution x-ray photoelectron spectroscopy. GaAs photoanodes were chemically treated to prepare either an oxide-free near stoichiometric surface, a surface enriched in zero-valent arsenic (As0), or a substrate-oxide terminated surface. The current-voltage (I-V) behavior of each surface type was subsequently monitored in contact with several electrolytes
A Simple Boltzmann Transport Equation for Ballistic to Diffusive Transient Heat Transport
Developing simplified, but accurate, theoretical approaches to treat heat
transport on all length and time scales is needed to further enable scientific
insight and technology innovation. Using a simplified form of the Boltzmann
transport equation (BTE), originally developed for electron transport, we
demonstrate how ballistic phonon effects and finite-velocity propagation are
easily and naturally captured. We show how this approach compares well to the
phonon BTE, and readily handles a full phonon dispersion and energy-dependent
mean-free-path. This study of transient heat transport shows i) how fundamental
temperature jumps at the contacts depend simply on the ballistic thermal
resistance, ii) that phonon transport at early times approach the ballistic
limit in samples of any length, and iii) perceived reductions in heat
conduction, when ballistic effects are present, originate from reductions in
temperature gradient. Importantly, this framework can be recast exactly as the
Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing
ballistic heat effects is to use the correct physical boundary conditions.Comment: 9 pages, 5 figure
Seeing Star Formation Regions with Gravitational Microlensing
We qualitatively study the effects of gravitational microlensing on our view
of unresolved extragalactic star formation regions. Using a general
gravitational microlensing configuration, we perform a number of simulations
that reveal that specific imprints of the star forming region are imprinted,
both photometrically and spectroscopically, upon observations. Such
observations have the potential to reveal the nature and size of these star
forming regions, through the degree of variability observed in a monitoring
campaign, and hence resolve the star formation regions in distant galaxies
which are too small to be probed via more standard techniques.Comment: 7 pages, 8 figures, ApJ accepte
Microlensing of Broad Absorption Line Quasars: Polarization Variability
Roughly 10% of all quasars exhibit Broad Absorption Line (BAL) features which
appear to arise in material outflowing at high velocity from the active
galactic nucleus (AGN). The details of this outflow are, however, very poorly
constrained and the particular nature of the BAL material is essentially
unknown. Recently, new clues have become available through polarimetric studies
which have found that BAL troughs are more polarized than the quasar continuum
radiation. To explain these observations, models where the BAL material
outflows equatorially across the surface of the dusty torus have been
developed. In these models, however, several sources of the BAL polarization
are possible. Here, we demonstrate how polarimetric monitoring of
gravitationally lensed quasars, such as H 1413+117, during microlensing events
can not only distinguish between two currently popular models, but can also
provide further insight into the structure at the cores of BAL quasars.Comment: 17 pages, 3 figures, accepted to PAS
Embodying functionally relevant action sounds in patients with spinal cord injury
Growing evidence indicates that perceptual-motor codes may be associated with and influenced by actual bodily states. Following a spinal cord injury (SCI), for example, individuals exhibit reduced visual sensitivity to biological motion. However, a dearth of direct evidence exists about whether profound alterations in sensorimotor traffic between the body and brain influence audio-motor representations. We tested 20 wheelchair-bound individuals with lower skeletal-level SCI who were unable to feel and move their lower limbs, but have retained upper limb function. In a two-choice, matching-to-sample auditory discrimination task, the participants were asked to determine which of two action sounds matched a sample action sound presented previously. We tested aural discrimination ability using sounds that arose from wheelchair, upper limb, lower limb, and animal actions. Our results indicate that an inability to move the lower limbs did not lead to impairment in the discrimination of lower limb-related action sounds in SCI patients. Importantly, patients with SCI discriminated wheelchair sounds more quickly than individuals with comparable auditory experience (i.e. physical therapists) and inexperienced, able-bodied subjects. Audio-motor associations appear to be modified and enhanced to incorporate external salient tools that now represent extensions of their body schema
Preliminary design-lift/cruise fan research and technology airplane flight control system
This report presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling qualities levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft interconnecting the three variable pitch fans and three power plants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy
- …