168 research outputs found
Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation
Hydrothermal vents are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of hydrothermal vent fluid and is frequently consumed at vent sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured hydrothermal vent-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x–12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic vent environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane activation
Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance
REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance
Protocol for a drugs exposure pregnancy registry for implementation in resource-limited settings
BACKGROUND: The absence of robust evidence of safety of medicines in pregnancy, particularly those for major diseases provided by public health programmes in developing countries, has resulted in cautious recommendations on their use. We describe a protocol for a Pregnancy Registry adapted to resource-limited settings aimed at providing evidence on the safety of medicines in pregnancy.METHODS/DESIGN:Sentinel health facilities are chosen where women come for prenatal care and are likely to come for delivery. Staff capacity is improved to provide better care during the pregnancy, to identify visible birth defects at delivery and refer infants with major anomalies for surgical or clinical evaluation and treatment. Consenting women are enrolled at their first antenatal visit and careful medical, obstetric and drug-exposure histories taken; medical record linkage is encouraged. Enrolled women are followed up prospectively and their histories are updated at each subsequent visit. The enrolled woman is encouraged to deliver at the facility, where she and her baby can be assessed.DISCUSSION:In addition to data pooling into a common WHO database, the WHO Pregnancy Registry has three important features: First is the inclusion of pregnant women coming for antenatal care, enabling comparison of birth outcomes of women who have been exposed to a medicine with those who have not. Second is its applicability to resource-poor settings regardless of drug or disease. Third is improvement of reproductive health care during pregnancies and at delivery. Facility delivery enables better health outcomes, timely evaluation and management of the newborn, and the collection of reliable clinical data. The Registry aims to improve maternal and neonatal care and also provide much needed information on the safety of medicines in pregnancy
Money, Love, and Fragile Reciprocity in Contemporary Havana, Cuba
Among low-income Havana residents, men frequently give money and other forms of material support to women in whom they have a romantic interest. For women, men's material contributions are expressions of responsibility and care. While men share this view to a degree, they sometimes have more ambiguous emotions regarding such practices. These tensions in different views of gendered reciprocity are influenced by large-scale changes that have taken place in Cuban society since the 1990s. Although, traditionally, state socialism has embraced ideas of gender egalitarianism and women's independent income, the post-Soviet period has seen the emergence of new inequalities, dependencies, and marginalizations that threaten earlier, socialist understandings of intimacy. The importance that women currently place on material wealth in terms of their views of a desirable partner highlights the gendered consequences of Cuba's contemporary economic transformations and their complex interplay with individuals' aspirations for love.Peer reviewe
Hemodynamic-based Assessment and Management of Cardiogenic Shock
Cardiogenic shock (CS) remains a deadly disease entity challenging patients, caregivers, and communities across the globe. CS can rapidly lead to the development of hypoperfusion and end-organ dysfunction, transforming a predictable hemodynamic event into a potential high-resource, intense, hemometabolic clinical catastrophe. Based on the scalable heterogeneity from a cellular level to healthcare systems in the hemodynamic-based management of patients experiencing CS, we present considerations towards systematic hemodynamic-based transitions in which distinct clinical entities share the common path of early identification and rapid transitions through an adaptive longitudinal situational awareness model of care that influences specific management considerations. Future studies are needed to best understand optimal management of drugs and devices along with engagement of health systems of care for patients with CS
Brain Derived Neurotrophic Factor (BDNF) Expression Is Regulated by MicroRNAs miR-26a and miR-26b Allele-Specific Binding
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays an essential role in neuronal development and plasticity. MicroRNA (miRNAs) are small non-coding RNAs of about 22-nucleotides in length regulating gene expression at post-transcriptional level. In this study we explore the role of miRNAs as post-transcriptional inhibitors of BDNF and the effect of 3′UTR sequence variations on miRNAs binding capacity. Using an in silico approach we identified a group of miRNAs putatively regulating BDNF expression and binding to BDNF 3′UTR polymorphic sequences. Luciferase assays demonstrated that these miRNAs (miR-26a1/2 and miR-26b) downregulates BDNF expression and that the presence of the variant alleles of two single nucleotide polymorphisms (rs11030100 and rs11030099) mapping in BDNF 3′UTR specifically abrogates miRNAs targeting. Furthermore we found a high linkage disequilibrium rate between rs11030100, rs11030099 and the non-synonymous coding variant rs6265 (Val66Met), which modulates BDNF mRNA localization and protein intracellular trafficking. Such observation led to hypothesize that miR-26s mediated regulation could extend to rs6265 leading to an allelic imbalance with potentially functional effects, such as peptide's localization and activity-dependent secretion. Since rs6265 has been previously implicated in various neuropsychiatric disorders, we evaluated the distribution of rs11030100, rs11030099 and rs6265 both in a control and schizophrenic group, but no significant difference in allele frequencies emerged. In conclusion, in the present study we identified two novel miRNAs regulating BDNF expression and the first BDNF 3′UTR functional variants altering miRNAs-BDNF binding
Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS
Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analysis
Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy
Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins
Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC
This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as ab of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as ab of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics
- …