745 research outputs found
A bivariate first order autoregressive time series model in exponential variables (BEAR (1))
A simple time series model for bivariate exponential variables having first-order auto-regressive structure is presented. The linear random coefficient difference equation model is an adaptation of the New Exponential Autoregressive model (NEAR (2)). The process is Markovian in the bivariate sense and has correlation structure analogous to that of the Gaussian AR(1) bivariate time series model. The model exhibits a full range of positive correlations and cross-correlations. With some modification in either the innovation or the random coefficients, the model admits some negative values for the cross- correlations. The marginal processes are shown to have correlation structure of ARMA (2,1) modelsPrepared for: Naval Postgraduate School
Monterey, CAhttp://archive.org/details/bivariatefirstor00dewaNAN
Understanding person acquisition using an interactive activation and competition network
Face perception is one of the most developed visual skills that humans display, and recent work has attempted to examine the mechanisms involved in face perception through noting how neural networks achieve the same performance. The purpose of the present paper is to extend this approach to look not just at human face recognition, but also at human face acquisition. Experiment 1 presents empirical data to describe the acquisition over time of appropriate representations for newly encountered faces. These results are compared with those of Simulation 1, in which a modified IAC network capable of modelling the acquisition process is generated. Experiment 2 and Simulation 2 explore the mechanisms of learning further, and it is demonstrated that the acquisition of a set of associated new facts is easier than the acquisition of individual facts in isolation of one another. This is explained in terms of the advantage gained from additional inputs and mutual reinforcement of developing links within an interactive neural network system. <br/
Effects of alveolar surfactant aggregates on T-lymphocyte proliferation
AbstractThe effects of alveolar large aggregate (LA) and small aggregate (SA) surfactant subfractions isolated from healthy adult rats on mitogen-stimulated proliferative responses of human peripheral blood mononuclear cells (PBMC) was examined. Various concentrations of total surfactant suppressed proliferation of stimulated lymphocytes by up to 95% of mitogen-stimulated cells alone. LA subfractions of total surfactant had no effect on proliferation, whereas SA significantly enhanced the lymphocyte proliferation at lower concentrations (7.8 μg/ml) compared to mitogen-stimulated cells alone. Higher concentrations of SA (62.5 μg/ml) inhibited lymphocyte proliferation. This concentration-dependent effect of SA on proliferation of PBMC was also present when cells were stimulated with various lectins including anti-CD3, concanavalin A and phytohemagglutinin. Analysis of the supernatant of mitogen-stimulated cell cultures treated with inhibitory concentrations of SA showed decreased amounts of interleukin (IL)-2, compared to cells alone, which could be reversed by adding exogenous IL-2 to the cell cultures with the SA. These results suggest that alveolar surfactant subfractions have distinct functions within the alveoli, both biophysically and with respect to their effects on the host’s immunomodulatory responses
The use of yeast inoculation in fermentation for port production; effect on total potential ethyl carbamate
A commercial wine yeast Saccharomyces cerevisiae UCD 522 (pre-cultured in the presence of certain mass-labelled amino acids) was inoculated into a port must which was then allowed to ferment under controlled conditions of temperature and agitation. The influence of potential ethyl carbamate (EC) precursor formed due to yeast pre-culture, upon total potential EC levels was studied at various stages of fermentation. Pre-culture accumulation did not give rise to detectable levels of EC precursor during port fermentation
The Sigma 13 (10-14) twin in alpha-Al2O3: A model for a general grain boundary
The atomistic structure and energetics of the Sigma 13 (10-14)[1-210]
symmetrical tilt grain boundary in alpha-Al2O3 are studied by first-principles
calculations based on the local-density-functional theory with a mixed-basis
pseudopotential method. Three configurations, stable with respect to
intergranular cleavage, are identified: one Al-terminated glide-mirror twin
boundary, and two O-terminated twin boundaries, with glide-mirror and two-fold
screw-rotation symmetries, respectively. Their relative energetics as a
function of axial grain separation are described, and the local electronic
structure and bonding are analysed. The Al-terminated variant is predicted to
be the most stable one, confirming previous empirical calculations, but in
contrast with high-resolution transmission electron microscopy observations on
high-purity diffusion-bonded bicrystals, which resulted in an O-terminated
structure.
An explanation of this discrepancy is proposed, based on the different
relative energetics of the internal interfaces with respect to the free
surfaces
Long distance regularization in chiral perturbation theory with decuplet
We investigate the use of long distance regularization in SU(3) baryon chiral
perturbation theory with decuplet fields. The one-loop decuplet contributions
to the octet baryon masses, axial couplings, S-wave nonleptonic hyperon decays
and magnetic moments are evaluated in a chirally consistent fashion by
employing a cutoff to implement long distance regularization. The convergence
of the chiral expansions of these quantities is improved compared to the
dimensionally regularized version which indicates that the propagation of
Goldstone bosons over distances smaller than a typical hadronic size, which is
beyond the regime of chiral perturbation theory but included by dimensional
regularization, is removed by use of a cutoff.Comment: 31 page
Mortality rates immediately after severe hurricanes in Cuba have decreased over the past three decades
ObjectivesThe objective of this study is to understand how Cuba responds to extreme weather events, which can help identify and disseminate good public health practice.Study designThe study design of this study is an observational study using routinely collected mortality data.MethodsNational daily mortality counts after severe hurricanes arrived on the Cuba landmass since 1990 were compared with baseline values. Incidence rate ratios of mortality during the hurricane and for the four weeks afterwards were calculated for four eligible hurricanes: Georges (1998), Dennis (2005), Ike (2008) and Irma (2017).ResultsMortality rates decreased over time (P < 0.001 for interaction), and no excess mortality counts were observed after Hurricane Irma in 2017.ConclusionsMortality rates for severe hurricanes that have made landfall in Cuba have decreased over three decades, despite the most recent hurricane (Irma) being one of the strongest observed in recent decades. This suggests that the Cuban public health preparations and responses to recent severe hurricanes are probably contributing to this mitigation in national mortality rates during these periods
Gravitational Lensing at Millimeter Wavelengths
With today's millimeter and submillimeter instruments observers use
gravitational lensing mostly as a tool to boost the sensitivity when observing
distant objects. This is evident through the dominance of gravitationally
lensed objects among those detected in CO rotational lines at z>1. It is also
evident in the use of lensing magnification by galaxy clusters in order to
reach faint submm/mm continuum sources. There are, however, a few cases where
millimeter lines have been directly involved in understanding lensing
configurations. Future mm/submm instruments, such as the ALMA interferometer,
will have both the sensitivity and the angular resolution to allow detailed
observations of gravitational lenses. The almost constant sensitivity to dust
emission over the redshift range z=1-10 means that the likelihood for strong
lensing of dust continuum sources is much higher than for optically selected
sources. A large number of new strong lenses are therefore likely to be
discovered with ALMA, allowing a direct assessment of cosmological parameters
through lens statistics. Combined with an angular resolution <0.1", ALMA will
also be efficient for probing the gravitational potential of galaxy clusters,
where we will be able to study both the sources and the lenses themselves, free
of obscuration and extinction corrections, derive rotation curves for the
lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on
"Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be
published by Springer-Verlag 2002. Paper with full resolution figures can be
found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
- …