5,683 research outputs found
A Comparison of Electrical Breakdown Characteristics of Composite Materials Prepared With Unmodified Micro and Nano Scale Barium Titanate
High permittivity polymer matrix composites (PMCs) have been widely researched, especially in the field of microelectronics. For this study, high permittivity materials were investigated for their potential to form part of a multi-layer electric field detector. The two main requirements for such composites were high permittivity and a dielectric strength comparable to most standard polymers used as dielectric materials. Polystyrene was selected as a host polymer due to its high dielectric strength and amorphous structure. Barium titanate, a ferroelectric ceramic from the perovskite family, was selected as a high permittivity filler. Polymer permittivity in PMCs is usually orders of magnitude lower compared to the filler permittivity, although the resultant permittivity of the composite is generally markedly lower than the permittivity of the filler may suggest. This is because very little energy is stored in the ceramic filler, such that any increase in composite permittivity is due to an increase in the average field with the polymer matrix.[1]Micro and nano scale barium titanate was blended into polystyrene in an effort to discern the initial differences between composites prepared with the two different filler types. It was found that the micro scale barium titanate was well dispersed and from studying SEM micrographs, appeared to have a good particle size distribution. The nanoscale barium titanate was found to be very poorly dispersed in polystyrene, with a wide particle size distributions formed of weakly bound aggregations and some seemingly chemically bonded agglomerations which were regular in shape with a surface texture which was indicative of tightly bound primary particles. Consistent with the differences in particle dispersion within the micro and nano composites, there was a marked difference in AC breakdown strength between the different materials. All electrical breakdown data was analysed using a 2 parameter Weibull distribution. Figure 1 compares the ? values for the micro and nano composites at different filler loadings.<br/
Electromagnetic field application to underground power cable detection
Before commencing excavation or other work where power or other cables may be buried, it is important to determine the location of cables to ensure that they are not damaged. This paper describes a method of power-cable detection and location that uses measurements of the magnetic field produced by the currents in the cable, and presents the results of tests performed to evaluate the method. The cable detection and location program works by comparing the measured magnetic field signal with values predicted using a simple numerical model of the cable. Search coils are used as magnetic field sensors, and a measurement system is setup to measure the magnetic field of an underground power cable at a number of points above the ground so that it can detect the presence of an underground power cable and estimate its position. Experimental investigations were carried out using a model and under real site test conditions. The results show that the measurement system and cable location method give a reasonable prediction for the position of the target cable
Detection and Location of Underground Power Cable using Magnetic Field Technologies
The location of buried underground electricity cables is becoming a major engineering and social issue worldwide. Records of utility locations are relatively scant, and even when records are available, they almost always refer to positions relative to ground-level physical features that may no longer exist or that may have been moved or altered. The lack of accurate positioning records of existing services can cause engineering and construction delays and safety hazards when new construction, repairs, or upgrades are necessary. Hitting unknown underground obstructions has the potential to cause property damage, injuries and, even deaths. Thus, before commencing excavation or other work where power or other cables may be buried, it is important to determine the location of the cables to ensure that they are not damaged during the work. This paper describes the use of an array of passive magnetic sensors (induction coils) together with signal processing techniques to detect and locate underground power cables. The array consists of seven identical coils mounted on a support frame; one of these coils was previously tested under laboratory conditions, and relevant results have been published in [1]. A measurement system was constructed that uses a battery powered data acquisition system with two NI 9239 modules connected to the coil array, and controlled by a laptop. The system is designed to measure the magnetic field of an underground power cable at a number of points above the ground. A 3 by 3 m test area was chosen in one of our campus car parks. This area was chosen because the university’s utility map shows an isolated power cable there. Measurements were taken with the array in 16 different test positions, and compared with the values predicted for a long straight horizontal cable at various positions. Finally, error maps were plotted for different Z-coordinate values, showing the minimum fitting error for each position in this plane. One such map is shown in Figure 1; the low error values of 4-5% give a high degree of confidence that most of the measured signal is due to a cable near to these positions. This view is supported by the fact that the university’s utility map shows the cable at X = 1.4 m, and by amplitude measurements taken with a hand-held magnetic field meter
Modeling of Isotropic Backward-Wave Materials Composed of Resonant Spheres
A possibility to realize isotropic artificial backward-wave materials is
theoretically analyzed. An improved mixing rule for the effective permittivity
of a composite material consisting of two sets of resonant dielectric spheres
in a homogeneous background is presented. The equations are validated using the
Mie theory and numerical simulations. The effect of a statistical distribution
of sphere sizes on the increasing of losses in the operating frequency band is
discussed and some examples are shown.Comment: 15 pages, 7 figure
Smart Materials as Intelligent Insulation
In order to provide a robust infrastructure for the transmission and distribution of electrical power, understanding and monitoring equipment ageing and failure is of paramount importance. Commonly, failure is associated with degradation of the dielectric material; therefore the introduction of a smart moiety into the material is a potentially attractive means of continual condition monitoring. It is important that any introduction of smart groups into the dielectric does not have any detrimental effect on the desirable electrical and mechanical properties of the bulk material. Initial work focussed on the introduction of fluorophores into a model dielectric system. Fluorescence is known to be a visible effect even at very low concentrations of active fluorophores and therefore was thought well suited to such an application. It was necessary both to optimise the active fluorophore itself and to determine the most appropriate manner in which to introduce the fluorophores into the insulating system. This presentation will describe the effect of introducing fluorophores into polymeric systems on the dielectric properties of the material and the findings thus far [1]. Alternative smart material systems will also be discussed along with the benefits and limitations of smart materials as electric field sensors
Cataclysmic Variables and Other Compact Binaries in the Globular Cluster NGC 362: Candidates from Chandra and HST
Highly sensitive and precise X-ray imaging from Chandra, combined with the
superb spatial resolution of HST optical images, dramatically enhances our
empirical understanding of compact binaries such as cataclysmic variables and
low mass X-ray binaries, their progeny, and other stellar X-ray source
populations deep into the cores of globular clusters. Our Chandra X-ray images
of the globular cluster NGC 362 reveal 100 X-ray sources, the bulk of which are
likely cluster members. Using HST color-magnitude and color-color diagrams, we
quantitatively consider the optical content of the NGC 362 Chandra X-ray error
circles, especially to assess and identify the compact binary population in
this condensed-core globular cluster. Despite residual significant crowding in
both X-rays and optical, we identify an excess population of H{\alpha}-emitting
objects that is statistically associated with the Chandra X-ray sources. The
X-ray and optical characteristics suggest that these are mainly cataclysmic
variables, but we also identify a candidate quiescent low mass X-ray binary. A
potentially interesting and largely unanticipated use of observations such as
these may be to help constrain the macroscopic dynamic state of globular
clusters.Comment: 6 pages, 6 figures, to appear in the proceedings of the conference
"Binary Star Evolution: Mass Loss, Accretion, and Mergers," Mykonos, Greece,
June 22-25, 201
Beam Profile Measurements and Simulations of the PETRA Laser-Wire
The Laser-wire will be an essential diagnostic tool at the International
Linear Collider. It uses a finely focussed laser beam to measure the transverse
profile of electron bunches by detecting the Compton-scattered photons (or
degraded electrons) downstream of where the laser beam intersects the electron
beam. Such a system has been installed at the PETRA storage ring at DESY, which
uses a piezo-driven mirror to scan the laser-light across the electron beam.
Lat- est results of experimental data taking are presented and compared to
detailed simulations using the Geant4 based program BDSIM.Comment: 3 pagesm 4 figures. Submitted as a conference paper for the Particle
Accelerator Conference 2005 (PAC05
Dynamics of Social Balance on Networks
We study the evolution of social networks that contain both friendly and
unfriendly pairwise links between individual nodes. The network is endowed with
dynamics in which the sense of a link in an imbalanced triad--a triangular loop
with 1 or 3 unfriendly links--is reversed to make the triad balanced. With this
dynamics, an infinite network undergoes a dynamic phase transition from a
steady state to "paradise"--all links are friendly--as the propensity p for
friendly links in an update event passes through 1/2. A finite network always
falls into a socially-balanced absorbing state where no imbalanced triads
remain. If the additional constraint that the number of imbalanced triads in
the network does not increase in an update is imposed, then the network quickly
reaches a balanced final state.Comment: 10 pages, 7 figures, 2-column revtex4 forma
Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748-676 back to quiescence
The quasi-persistent neutron star X-ray transient and eclipsing binary EXO
0748-676 recently started the transition to quiescence following an accretion
outburst that lasted more than 24 years. We report on two Chandra and twelve
Swift observations performed within five months after the end of the outburst.
The Chandra spectrum is composed of a soft, thermal component that fits to a
neutron star atmosphere model with kT^inf~0.12 keV, joined by a hard powerlaw
tail that contributes ~20% of the total 0.5-10 keV unabsorbed flux. The
combined Chandra/Swift data set reveals a relatively hot and luminous quiescent
system with a temperature of kT^inf~0.11-0.13 keV and a bolometric thermal
luminosity of ~8.1E33-1.6E34 (d/7.4 kpc)^2 erg/s. We discuss our results in the
context of cooling neutron star models.Comment: Accepted for publication in MNRAS Letters, moderate revision
according to referee report, added one plot to figure 2 and included new
Swift observations, 5 pages, 2 figure
A Cellular Automaton Model for Diffusive and Dissipative Systems
We study a cellular automaton model, which allows diffusion of energy (or
equivalently any other physical quantities such as mass of a particular
compound) at every lattice site after each timestep. Unit amount of energy is
randomly added onto a site. Whenever the local energy content of a site reaches
a fixed threshold , energy will be dissipated. Dissipation of energy
propagates to the neighboring sites provided that the energy contents of those
sites are greater than or equal to another fixed threshold . Under such dynamics, the system evolves into three different types of
states depending on the values of and as reflected in their
dissipation size distributions, namely: localized peaks, power laws, or
exponential laws. This model is able to describe the behaviors of various
physical systems including the statistics of burst sizes and burst rates in
type-I X-ray bursters. Comparisons between our model and the famous forest-fire
model (FFM) are made.Comment: in REVTEX 3.0. Figures available on request. Extensively revised.
Accepted by Phys.Rev.
- …