32 research outputs found

    A "problem of time" in the multiplicative scheme for the nn-site hopper

    Full text link
    Quantum Measure Theory (QMT) is an approach to quantum mechanics, based on the path integral, in which quantum theory is conceived of as a generalised stochastic process. One of the postulates of QMT is that events with zero quantum measure do not occur, however this is not sufficient to give a full picture of the quantum world. Determining the other postulates is a work in progress and this paper investigates a proposal called the Multiplicative Scheme for QMT in which the physical world corresponds, essentially, to a set of histories from the path integral. This scheme is applied to Sorkin's nn-site hopper, a discrete, unitary model of a single particle on a ring of nn sites, motivated by free Schr\"odinger propagation. It is shown that the multiplicative scheme's global features lead to the conclusion that no non-trivial, time-finite event can occur.Comment: 24 pages, 2 figures. Now published in J. Phys. A: Math. Theor. under CC-BY. New version expands section 3.1 and corrects typo

    Soft pair excitations and double-log divergences due to carrier interactions in graphene

    Get PDF
    Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e-h) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e-h pair cascades down in energy and gives rise to multiple soft e-h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ). Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade

    Pairing in magic-angle twisted bilayer graphene: role of phonon and plasmon umklapp

    Get PDF
    Identifying the microscopic mechanism for superconductivity in magic-angle twisted bilayer graphene (MATBG) is an outstanding open problem. While MATBG exhibits a rich phase-diagram, driven partly by the strong interactions relative to the electronic bandwidth, its single-particle properties are unique and likely play an important role in some of the phenomenological complexity. Some of the salient features include an electronic bandwidth smaller than the characteristic phonon bandwidth and a non-trivial structure of the underlying Bloch wavefunctions. We perform a systematic theoretical study of the cooperative effects due to phonons and plasmons on pairing in order to disentangle the distinct role played by these modes on superconductivity. We consider a variant of MATBG with an enlarged number of fermion flavors, N≫1, where the study of pairing instabilities reduces to the conventional (weak-coupling) Eliashberg framework. In particular, we show that certain umklapp processes involving mini-optical phonon modes, which arise physically as a result of the folding of the original acoustic branch of graphene due to the moiré superlattice structure, contribute significantly towards enhancing pairing. We also investigate the role played by the dynamics of the screened Coulomb interaction on pairing, which leads to an enhancement in a narrow window of fillings, and study the effect of external screening due to a metallic gate on superconductivity. We propose a smoking-gun experiment to detect resonant features associated with the phonon-umklapp processes in the differential conductance and also discuss experimental implications of a pairing mechanism relying on plasmons

    Pairing in magic-angle twisted bilayer graphene: role of phonon and plasmon umklapp

    Get PDF
    Identifying the microscopic mechanism for superconductivity in magic-angle twisted bilayer graphene (MATBG) is an outstanding open problem. While MATBG exhibits a rich phase-diagram, driven partly by the strong interactions relative to the electronic bandwidth, its single-particle properties are unique and likely play an important role in some of the phenomenological complexity. Some of the salient features include an electronic bandwidth smaller than the characteristic phonon bandwidth and a non-trivial structure of the underlying Bloch wavefunctions. We perform a theoretical study of the cooperative effects due to phonons and plasmons on pairing in order to disentangle the distinct role played by these modes on superconductivity. We consider a variant of MATBG with an enlarged number of fermion flavors, N≫1N \gg 1, where the study of pairing instabilities reduces to the conventional (weak-coupling) Eliashberg framework. In particular, we show that certain umklapp processes involving mini-optical phonon modes, which arise physically as a result of the folding of the original acoustic branch of graphene due to the moir\'e superlattice structure, contribute significantly towards enhancing pairing. We also investigate the role played by the dynamics of the screened Coulomb interaction on pairing, which leads to an enhancement in a narrow window of fillings, and study the effect of external screening due to a metallic gate on superconductivity. At strong coupling the dynamical pairing interaction leaves a spectral mark in the single particle tunneling density of states. We thus predict such features will appear at specific frequencies of the umklapp phonons corresponding to the sound velocity of graphene times an integer multiple of the Brillouin zone size.Comment: 20 pages, 8 figure

    Visualizing structure of correlated ground states using collective charge modes

    Full text link
    The variety of correlated phenomena in moir\'e systems is incredibly rich, spanning effects such as superconductivity, a generalized form of ferromagnetism, or even charge fractionalization. This wide range of quantum phenomena is partly enabled by the large number of internal degrees of freedom in these systems, such as the valley and spin degrees of freedom, which interplay decides the precise nature of the ground state. Identifying the microscopic nature of the correlated states in the moir\'e systems is, however, challenging, as it relies on interpreting transport behavior or scanning-tunneling microscopy measurements. Here we show how the real-space structure of collective charge oscillations of the correlated orders can directly encode information about the structure of the correlated state, focusing in particular on the problem of generalized Wigner crystals in moir\'e transition metal dichalcogenides. Our analysis builds upon our earlier result [10.1126/sciadv.adg3262] that the presence of a generalized Wigner crystal modifies the plasmon spectrum of the system, giving rise to new collective modes. We focus on scanning near-field optical microscopy technique (SNOM), fundamentally a charge-sensing-based method, and introduce a regime under which SNOM can operate as a probe of the spin degree of freedom.Comment: 12 pages, 4 figure
    corecore