33,589 research outputs found
Optical scanning tests of complex CMOS microcircuits
The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested
Development of advanced digital techniques for data acquisition processing and communication Interim scientific report
Design, video data characteristics, error control, and compression algorithms for Mars television mapping missio
Different steady states for spin currents in noncollinear multilayers
We find there are at least two different steady states for transport across
noncollinear magnetic multilayers. In the conventional one there is a
discontinuity in the spin current across the interfaces which has been
identified as the source of current induced magnetic reversal; in the one
advocated herein the spin torque arises from the spin accumulation transverse
to the magnetization of a magnetic layer. These two states have quite different
attributes which should be discerned by current experiments.Comment: 8 pages, no figure. Accepted for publication in Journal of Physics:
Condensed Matte
Characteristics of enzymatic induction provoked by chlordane
The effects of various stresses, such as restraint and lowering or raising of environmental temperature, in mice pretreated with chlordane were investigated. (Chlordane is an inhibitor of protein synthesis.) It was found that restraint or exposure to a cold environment for three hours mobilized the chlordane stored in the adipose tissue of mice
Electromagnetic radiation screening of microcircuits for long life applications
The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws
Electrical manipulation of an electronic two-state system in Ge/Si quantum dots
We calculate that the electron states of strained self-assembled Ge/Si
quantum dots provide a convenient two-state system for electrical control. An
electronic state localized at the apex of the quantum dot is nearly degenerate
with a state localized at the base of the quantum dot. Small electric fields
shift the electronic ground state from apex-localized to base-localized, which
permits sensitive tuning of the electronic, optical and magnetic properties of
the dot. As one example, we describe how spin-spin coupling between two Ge/Si
dots can be controlled very sensitively by shifting the individual dot's
electronic ground state between apex and base
Development of advanced digital techniques for data acquisition processing and communication Interim scientific report
Image correlation and computerized simulation applied to data acquisition and imaging technique
The steady state in noncollinear magnetic multilayers
There are at least two different putative steady state solutions for current
across noncollinear magnetic multilayers; one has a discontinuity in the spin
current at the interface the other is continuous. We compare the resistance of
the two and find the solution with the continuous spin currents is lower. By
using the entropic principle we can state that this solution is a better
estimate of the resistance for a noncollinear magneticComment: 14 pages, 4 figures,Submitted to Physical Review
Assembly, trafficking and function of gamma-secretase
gamma-Secretase catalyzes the final cleavage of the beta-amyloid precursor protein to generate amyloid-beta peptide, the principal component of amyloid plaques in the brains of patients suffering from Alzheimer's disease. Here, we review the identification of gamma-secretase as a protease complex and its assembly and trafficking to its site(s) of cellular function. In reconstitution experiments, gamma-secretase was found to be composed of four integral membrane proteins, presenilin (PS), nicastrin (NCT), PEN-2 and APH-1 that are essential and sufficient for gamma-secretase activity. PS, which serves as a catalytic subunit of gamma-secretase, was identified as a prototypic member of novel aspartyl proteases of the GxGD type. In human cells, gamma-secretase could be further defined as a heterogeneous activity consisting of distinct complexes that are composed of PS1 or PS2 and APH-1a or APH-1b homologues together with NCT and PEN-2. Using green fluorescent protein as a reporter we localized PS and gamma-secretase activity at the plasma membrane and endosomes. Investigation of gamma-secretase complex assembly in knockdown and knockout cells of the individual subunits allowed us to develop a model of complex assembly in which NCT and APH-1 first stabilize PS before PEN-2 assembles as the last component. Furthermore, we could map domains in PS and PEN-2 that govern assembly and trafficking of the complex. Finally, Rer1 was identified as a PEN-2-binding protein that serves a role as an auxiliary factor for gamma-secretase complex assembly. Copyright (c) 2006 S. Karger AG, Basel
- …