282 research outputs found
Constitutive activation and oncogenicity are mediated by loss of helical structure at the cytosolic boundary of thrombopoietin receptor mutant dimers
Dimerization of the thrombopoietin receptor (TpoR) is necessary for receptor activation and downstream signaling through activated Janus kinase 2. We have shown previously that different orientations of the transmembrane (TM) helices within a receptor dimer can lead to different signaling outputs. Here we addressed the structural basis of activation for receptor mutations S505N and W515K that induce myeloproliferative neoplasms. We show using in vivo bone marrow reconstitution experiments that ligand-independent activation of TpoR by TM asparagine (Asn) substitutions is proportional to the proximity of the Asn mutation to the intracellular membrane surface. Solid-state NMR experiments on TM peptides indicate a progressive loss of helical structure in the juxtamembrane (JM) R/KWQFP motif with proximity of Asn substitutions to the cytosolic boundary. Mutational studies in the TpoR cytosolic JM region show that loss of the helical structure in the JM motif by itself can induce activation, but only when localized to a maximum of six amino acids downstream of W515, the helicity of the remaining region until Box 1 being required for receptor function. The constitutive activation of TpoR mutants S505N and W515K can be inhibited by rotation of TM helices within the TpoR dimer, which also restores helicity around W515. Together, these data allow us to develop a general model for activation of TpoR and explain the critical role of the JM W515 residue in the regulation of the activity of the receptor
Neuromyelitis optica spectrum disorders in children and adolescents.
Neuromyelitis optica (NMO) is a severe autoimmune disease of the CNS characterized by recurrent inflammatory events primarily involving the optic nerves and spinal cord. NMO is infrequent in children, but early recognition is important to start adequate treatment. In this article, we review the evolving diagnostic criteria of NMO and provide an update on the clinical and neuroimaging spectrum of the disorder in pediatric patients, including current knowledge on immunopathogenesis and treatment recommendations for children with NMO.journal articlereview2016 Aug 30importe
Genetic markers of Restless Legs Syndrome in Parkinson disease
INTRODUCTION:
Several studies proposed that Restless Legs Syndrome (RLS) and Parkinson disease (PD) may be clinically and/or etiologically related. To examine this hypothesis, we aimed to determine whether the known RLS genetic markers may be associated with PD risk, as well as with PD subtype.
METHODS:
Two case-control cohorts from Tel-Aviv and New-York, including 1133 PD patients and 867 controls were genotyped for four RLS-related SNPs in the genes MEIS1, BTBD9, PTPRD and MAP2K5/SKOR1. The association between genotype, PD risk and phenotype was tested using multivariate regression models.
RESULTS:
None of the tested SNPs was significantly associated with PD risk, neither in any individual cohort nor in the combined analysis after correction for multiple comparisons. The MAP2K5/SKOR1 marker rs12593813 was associated with higher frequency of tremor in the Tel-Aviv cohort (61.0% vs. 46.5%, p = 0.001, dominant model). However, the risk allele for tremor in this gene has been associated with reduced RLS risk. Moreover, this association did not replicate in Tremor-dominant PD patients from New-York.
CONCLUSION:
RLS genetic risk markers are not associated with increased PD risk or subtype in the current study. Together with previous genetic, neuropathological and epidemiologic studies, our results further strengthen the notion that RLS and PD are likely to be distinct entities
Analysis of common and rare VPS13C variants in late-onset Parkinson disease
Objective
We aimed to study the role of coding VPS13C variants in a large cohort of patients with lateonset Parkinson disease (PD) (LOPD).
Methods
VPS13C and its untranslated regions were sequenced using targeted next-generation sequencing in 1,567 patients with PD and 1,667 controls from 3 cohorts. Association tests of rare
potential homozygous and compound heterozygous variants and burden tests for rare heterozygous variants were performed. Common variants were analyzed using logistic regression
adjusted for age and sex in each of the cohorts, followed by a meta-analysis.
Results
No biallelic carriers of rare VPS13C variants were found among patients, and 2 carriers of
compound heterozygous variants were found in 2 controls. There was no statistically significant
burden of rare (minor allele frequency [MAF] <1%) or very rare (MAF <0.1%) coding VPS13C
variants in PD. A VPS13C haplotype including the p.R153H-p.I398I-p.I1132V-p.Q2376Q
variants was nominally associated with a reduced risk for PD (meta-analysis of the tagging SNP
p.I1132V [odds ratio = 0.48, 95% confidence interval = 0.28–0.82, p = 0.0052]). This haplotype
was not in linkage disequilibrium with the known genome-wide association study top hit.
Conclusions
Our results do not support a role for rare heterozygous or biallelic VPS13C variants in LOPD.
Additional genetic replication and functional studies are needed to examine the role of the
haplotype identified here associated with reduced risk for PD
Food processing and cancer risk in Europe: results from the prospective EPIC cohort study
Background Food processing has been hypothesised to play a role in cancer development; however, data from large-scale epidemiological studies are scarce. This study investigated the association between dietary intake according to amount of food processing and risk of cancer at 25 anatomical sites using data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Methods This study used data from the prospective EPIC cohort study, which recruited participants between March 18, 1991, and July 2, 2001, from 23 centres in ten European countries. Participant eligibility within each cohort was based on geographical or administrative boundaries. Participants were excluded if they had a cancer diagnosis before recruitment, had missing information for the NOVA food processing classification, or were within the top and bottom 1% for ratio of energy intake to energy requirement. Validated dietary questionnaires were used to obtain information on food and drink consumption. Participants with cancer were identified using cancer registries or during follow-up from a combination of sources, including cancer and pathology centres, health insurance records, and active follow-up of participants. We performed a substitution analysis to assess the effect of replacing 10% of processed foods and ultra-processed foods with 10% of minimally processed foods on cancer risk at 25 anatomical sites using Cox proportional hazard models. Findings 521 324 participants were recruited into EPIC, and 450 111 were included in this analysis (318 686 [70·8%] participants were female individuals and 131 425 [29·2%] were male individuals). In a multivariate model adjusted for sex, smoking, education, physical activity, height, and diabetes, a substitution of 10% of processed foods with an equal amount of minimally processed foods was associated with reduced risk of overall cancer (hazard ratio 0·96, 95% CI 0·95–0·97), head and neck cancers (0·80, 0·75–0·85), oesophageal squamous cell carcinoma (0·57, 0·51–0·64), colon cancer (0·88, 0·85–0·92), rectal cancer (0·90, 0·85–0·94), hepatocellular carcinoma (0·77, 0·68–0·87), and postmenopausal breast cancer (0·93, 0·90–0·97). The substitution of 10% of ultra-processed foods with 10% of minimally processed foods was associated with a reduced risk of head and neck cancers (0·80, 0·74–0·88), colon cancer (0·93, 0·89–0·97), and hepatocellular carcinoma (0·73, 0·62–0·86). Most of these associations remained significant when models were additionally adjusted for BMI, alcohol and dietary intake, and quality. Interpretation This study suggests that the replacement of processed and ultra-processed foods and drinks with an equal amount of minimally processed foods might reduce the risk of various cancer types. Funding Cancer Research UK, l'Institut National du Cancer, and World Cancer Research Fund International
Evidence for the exclusive decay Bc+- to J/psi pi+- and measurement of the mass of the Bc meson
We report first evidence for a fully reconstructed decay mode of the
B_c^{\pm} meson in the channel B_c^{\pm} \to J/psi \pi^{\pm}, with J/psi \to
mu^+mu^-. The analysis is based on an integrated luminosity of 360 pb$^{-1} in
p\bar{p} collisions at 1.96 TeV center of mass energy collected by the Collider
Detector at Fermilab. We observe 14.6 \pm 4.6 signal events with a background
of 7.1 \pm 0.9 events, and a fit to the J/psi pi^{\pm} mass spectrum yields a
B_c^{\pm} mass of 6285.7 \pm 5.3(stat) \pm 1.2(syst) MeV/c^2. The probability
of a peak of this magnitude occurring by random fluctuation in the search
region is estimated as 0.012%.Comment: 7 pages, 3 figures. Version 3, accepted by PR
Characterization of the degree of food processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova classification and validation using selected biomarkers of food processing
Background: Epidemiological studies have demonstrated an association between the degree of food processing in our diet and the risk of various chronic diseases. Much of this evidence is based on the international Nova classification system, which classifies food into four groups based on the type of processing: (1) Unprocessed and minimally processed foods, (2) Processed culinary ingredients, (3) Processed foods, and (4) “Ultra-processed” foods (UPF). The ability of the Nova classification to accurately characterise the degree of food processing across consumption patterns in various European populations has not been investigated so far. Therefore, we applied the Nova coding to data from the European Prospective Investigation into Cancer and Nutrition (EPIC) in order to characterize the degree of food processing in our diet across European populations with diverse cultural and socio-economic backgrounds and to validate this Nova classification through comparison with objective biomarker measurements. Methods: After grouping foods in the EPIC dataset according to the Nova classification, a total of 476,768 participants in the EPIC cohort (71.5% women; mean age 51 [standard deviation (SD) 9.93]; median age 52 [percentile (p)25–p75: 58–66] years) were included in the cross-sectional analysis that characterised consumption patterns based on the Nova classification. The consumption of food products classified as different Nova categories were compared to relevant circulating biomarkers denoting food processing, measured in various subsamples (N between 417 and 9,460) within the EPIC cohort via (partial) correlation analyses (unadjusted and adjusted by sex, age, BMI and country). These biomarkers included an industrial transfatty acid (ITFA) isomer (elaidic acid; exogenous fatty acid generated during oil hydrogenation and heating) and urinary 4-methyl syringol sulfate (an indicator for the consumption of smoked food and a component of liquid smoke used in UPF). Results: Contributions of UPF intake to the overall diet in % grams/day varied across countries from 7% (France) to 23% (Norway) and their contributions to overall % energy intake from 16% (Spain and Italy) to >45% (in the UK and Norway). Differences were also found between sociodemographic groups; participants in the highest fourth of UPF consumption tended to be younger, taller, less educated, current smokers, more physically active, have a higher reported intake of energy and lower reported intake of alcohol. The UPF pattern as defined based on the Nova classification (group 4;% kcal/day) was positively associated with blood levels of industrial elaidic acid (r = 0.54) and 4-methyl syringol sulfate (r = 0.43). Associations for the other 3 Nova groups with these food processing biomarkers were either inverse or non-significant (e.g., for unprocessed and minimally processed foods these correlations were –0.07 and –0.37 for elaidic acid and 4-methyl syringol sulfate, respectively). Conclusion: These results, based on a large pan-European cohort, demonstrate sociodemographic and geographical differences in the consumption of UPF. Furthermore, these results suggest that the Nova classification can accurately capture consumption of UPF, reflected by stronger correlations with circulating levels of industrial elaidic acid and a syringol metabolite compared to diets high in minimally processed foods
A genomic and transcriptomic approach for a differential diagnosis between primary and secondary ovarian carcinomas in patients with a previous history of breast cancer
<p>Abstract</p> <p>Background</p> <p>The distinction between primary and secondary ovarian tumors may be challenging for pathologists. The purpose of the present work was to develop genomic and transcriptomic tools to further refine the pathological diagnosis of ovarian tumors after a previous history of breast cancer.</p> <p>Methods</p> <p>Sixteen paired breast-ovary tumors from patients with a former diagnosis of breast cancer were collected. The genomic profiles of paired tumors were analyzed using the Affymetrix GeneChip<sup>® </sup>Mapping 50 K Xba Array or Genome-Wide Human SNP Array 6.0 (for one pair), and the data were normalized with ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) algorithm or Partek Genomic Suite, respectively. The transcriptome of paired samples was analyzed using Affymetrix GeneChip<sup>® </sup>Human Genome U133 Plus 2.0 Arrays, and the data were normalized with gc-Robust Multi-array Average (gcRMA) algorithm. A hierarchical clustering of these samples was performed, combined with a dataset of well-identified primary and secondary ovarian tumors.</p> <p>Results</p> <p>In 12 of the 16 paired tumors analyzed, the comparison of genomic profiles confirmed the pathological diagnosis of primary ovarian tumor (n = 5) or metastasis of breast cancer (n = 7). Among four cases with uncertain pathological diagnosis, genomic profiles were clearly distinct between the ovarian and breast tumors in two pairs, thus indicating primary ovarian carcinomas, and showed common patterns in the two others, indicating metastases from breast cancer. In all pairs, the result of the transcriptomic analysis was concordant with that of the genomic analysis.</p> <p>Conclusions</p> <p>In patients with ovarian carcinoma and a previous history of breast cancer, SNP array analysis can be used to distinguish primary and secondary ovarian tumors. Transcriptomic analysis may be used when primary breast tissue specimen is not available.</p
DNA Physical Properties and Nucleosome Positions Are Major Determinants of HIV-1 Integrase Selectivity
Retroviral integrases (INs) catalyse the integration of the reverse transcribed viral DNA into the host cell genome. This process is selective, and chromatin has been proposed to be a major factor regulating this step in the viral life cycle. However, the precise underlying mechanisms are still under investigation. We have developed a new in vitro integration assay using physiologically-relevant, reconstituted genomic acceptor chromatin and high-throughput determination of nucleosome positions and integration sites, in parallel. A quantitative analysis of the resulting data reveals a chromatin-dependent redistribution of the integration sites and establishes a link between integration sites and nucleosome positions. The co-activator LEDGF/p75 enhanced integration but did not modify the integration sites under these conditions. We also conducted an in cellulo genome-wide comparative study of nucleosome positions and human immunodeficiency virus type-1 (HIV-1) integration sites identified experimentally in vivo. These studies confirm a preferential integration in nucleosome-covered regions. Using a DNA mechanical energy model, we show that the physical properties of DNA probed by IN binding are important in determining IN selectivity. These novel in vitro and in vivo approaches confirm that IN has a preference for integration into a nucleosome, and suggest the existence of two levels of IN selectivity. The first depends on the physical properties of the target DNA and notably, the energy required to fit DNA into the IN catalytic pocket. The second depends on the DNA deformation associated with DNA wrapping around a nucleosome. Taken together, these results indicate that HIV-1 IN is a shape-readout DNA binding protein
- …