30 research outputs found

    Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite

    Get PDF
    Homocysteine (HCY) is toxic on blood vessels, but a potential direct toxicity of HCY on the heart is unknown. We addressed this issue by exposing H9C2 cardiomyocytes to HCY (0.1-5 mM) for up to 6h. At these concentrations, HCY reduced cell viability, induced necrosis and apoptosis and triggered the cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP). This was associated with the intracellular generation of the potent oxidant peroxynitrite. Removing peroxynitrite by the decomposition catalyst FeTPPS considerably reduced LDH release, DNA fragmentation, cleavage of caspase-3 and PARP, and restored normal cell morphology. In additional experiments performed in primary rat ventricular cardiomyocytes, HCY (1 mM, 6h) activated the phosphorylation of the MAP kinases ERK and JNK, two essential stress signaling kinases regulating myocardial apoptosis, hypertrophy and remodeling. These results provide the first demonstration that HCY kills cardiomyocytes through the generation of peroxynitrite and can activate key signaling cascades in the myocardium

    Peroxynitrite activates ERK via Raf-1 and MEK, independently from EGF receptor and p21Ras in H9C2 cardiomyocytes

    Get PDF
    Peroxynitrite is a potent oxidant and nitrating species proposed as a direct effector of myocardial damage in a wide range of cardiac diseases. Whether peroxynitrite also acts indirectly, by modulating cell signal transduction pathways in the myocardium, has not been investigated. Here, we examined the ability of peroxynitrite to activate extracellular signal-related kinase (ERK), a MAP kinase which has been linked with hypertrophic and anti-apoptotic responses in the heart, in cultured H9C2 cardiomyocytes. Peroxynitrite elicited a concentration- and time-dependent activation of ERK, secondary to the upstream activation of MEK 1 (ERK kinase). Activation of MEK-ERK by peroxynitrite was related to the upstream activation of Raf-1 kinase, as ERK and MEK phosphorylation were prevented by the Raf-1 inhibitor BAY43-9006. These effects of peroxynitrite were not associated with the activation of p21(Ras), known as a common signaling target of cellular oxidative stress. In contrast to ERK activation mediated by the epidermal growth factor (EGF), ERK activation by peroxynitrite was not prevented by AG1478 (EGF receptor inhibitor). Peroxynitrite acted through oxidative, but not nitrative chemistry, as ERK remained activated while nitration was prevented by the flavanol epicatechin. In addition to ERK, peroxynitrite also potently activated two additional members of the MAP kinase family of signaling proteins, JNK and p38. Thus, peroxynitrite activates ERK in cardiomyocytes through an unusual signaling cascade involving Raf-1 and MEK 1, independently from EGFR and P21(Ras), and also acts as a potent activator of JNK and p38. These results provide the novel concept that peroxynitrite may represent a previously unrecognized signaling molecule in various cardiac pathologies

    Peroxynitrite is a potent inhibitor of NF-{kappa}B activation triggered by inflammatory stimuli in cardiac and endothelial cell lines.

    Get PDF
    Peroxynitrite is a potent oxidant and nitrating species proposed as a direct effector of myocardial damage in numerous cardiac pathologies. Whether peroxynitrite also acts indirectly, by modulating cell signal transduction in the myocardium, has not been investigated. Therefore, we examined a possible role for peroxynitrite on the activation of NF-kappaB, a crucial pro-inflammatory transcription factor, in cultured H9C2 cardiomyocytes. H9C2 cells were stimulated with tumor necrosis factor-alpha or lipopolysaccharide following a brief (20-min) exposure to peroxynitrite. NF-kappaB activation (phosphorylation and degradation of its inhibitor IkappaBalpha, nuclear translocation of NF-kappaB p65, and NF-kappaB DNA binding) triggered by lipopolysaccharide or tumor necrosis factor-alpha was abrogated by peroxynitrite. Peroxynitrite also inhibited NF-kappaB in two human endothelial cell lines activated with tumor necrosis factor-alpha or interleukin-1beta. These effects were related to oxidative but not nitrative chemistry and were still being observed while nitration was suppressed by epicatechin. The mechanism of NF-kappaB inhibition by peroxynitrite was a complete blockade of phosphorylation and activation of the upstream kinase IkappaB kinase (IKK) beta, required for canonical, pro-inflammatory NF-kappaB activation. At the same time, peroxynitrite activated phosphorylation of NF-kappaB-inducing kinase and IKKalpha, considered as part of an alternative, noncanonical NF-kappaB activation pathway. Suppression of IKKbeta-dependent NF-kappaB activation translated into a marked inhibition of the transcription of NF-kappaB-dependent genes by peroxynitrite. Thus, peroxynitrite has a dual effect on NF-kappaB, inhibiting canonical IKKbeta-dependent NF-kappaB activation while activating NF-kappaB-inducing kinase and IKKalpha phosphorylation, which suggests its involvement in an alternative pathway of NF-kappaB activation. These findings offer new perspectives for the understanding of the relationships between redox stress and inflammation

    Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo

    Get PDF
    Recent evidence indicates that peroxynitrite represents a major cytotoxic effector in heart diseases, but its mechanisms of action are still not known exactly. Notably, the ability of peroxynitrite to trigger cardiomyocyte apoptosis, a crucial mode of cell death in many cardiac conditions, remains poorly defined. We evaluated apoptotic and necrotic cell death in cultured H9C2 cardiomyocytes, following a brief (20 min) exposure to peroxynitrite (50-500 microM). Peroxynitrite-dependent myocardial toxicity was then investigated in a rat model of myocardial ischemia-reperfusion (MIR), where the effects of peroxynitrite were blocked by the superoxide dismutase mimetics and peroxynitrite scavenger Mn(III)-tetrakis(4-benzoic acid) porphyrin (MnTBAP). In vitro, peroxynitrite killed cardiomyocytes mostly through apoptosis (DNA fragmentation, apoptotic nuclear alterations, caspase-3 activation, and PARP cleavage), but not necrosis (propidium iodide staining and LDH release). In vivo, MIR triggered myocardial oxidative stress (malondialdehyde generation), nitrotyrosine formation, neutrophil accumulation, and the cleavage of caspase-3 and PARP, indicating ongoing myocardial apoptosis. MnTBAP suppressed these alterations, allowing a considerable reduction of myocardial injury. Thus, peroxynitrite triggers apoptosis in cardiomyocytes in vitro and in the myocardium in vivo, through a pathway involving caspase-3 activation and the cleavage of PARP. These results provide important novel information on the mechanisms of myocardial toxicity of peroxynitrite

    Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity

    Get PDF
    Oxidative stress plays a key role in the pathogenesis of cancer and many metabolic diseases; therefore, an effective antioxidant therapy would be of great importance in these circumstances. Nevertheless, convincing randomized clinical trials revealed that antioxidant supplementations were not associated with significant reduction in incidence of cancer, chronic diseases and all-cause mortality. As oxidation of essential molecules continues, it turns to nitro-oxidative stress because of the involvement of nitric oxide in pathogenesis processes. Peroxynitrite damages via several distinctive mechanisms; first, it has direct toxic effects on all biomolecules and causes lipid peroxidation, protein oxidation and DNA damage. The second mechanism involves the induction of several transcription factors leading to cytokine-induced chronic inflammation. Finally, it causes epigenetic perturbations that exaggerate nuclear factor kappa-B mediated inflammatory gene expression. Lessons-learned from the treatment of several chronic disorders including pulmonary diseases suggest that, chronic inflammation and glucocorticoid resistance are regulated by prolonged peroxynitrite production

    Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo.

    Get PDF
    Myocardial ischemic postconditioning (PosC) describes an acquired resistance to lethal ischemia-reperfusion (I/R) injury afforded by brief episodes of I/R applied immediately after the ischemic insult. Cardioprotection is conveyed by parallel signaling pathways converging to prevent mitochondria permeability transition. Recent observations indicated that PostC is associated with free radicals generation, including nitric oxide (NO(.)) and superoxide (O2 (.-)), and that cardioprotection is abrogated by antioxidants. Since NO. And O2 (. -) react to form peroxynitrite, we hypothesized that postC might trigger the formation of peroxyntrite to promote cardioprotection in vivo. Rats were exposed to 45 min of myocardial ischemia followed by 3h reperfusion. PostC (3 cycles of 30 seconds ischemia/30 seconds reperfusion) was applied at the end of index ischemia. In a subgroup of rats, the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (FeTPPS) was given intravenously (10 mg/kg(-1)) 5 minutes before PostC. Myocardial nitrotyrosine was determined as an index of peroxynitrite formation. Infarct size (colorimetric technique and plasma creatine kinase-CK-levels) and left ventricle (LV) function (micro-tip pressure transducer), were determined. A significant generation of 3-nitrotyrosine was detected just after the PostC manoeuvre. PostC resulted in a marked reduction of infarct size, CK release and LV systolic dysfunction. Treatment with FeTPPS before PostC abrogated the beneficial effects of PostC on myocardial infarct size and LV function. Thus, peroxynitrite formed in the myocardium during PostC induces cardioprotective mechanisms improving both structural and functional integrity of the left ventricle exposed to ischemia and reperfusion in vivo

    Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo

    Get PDF
    AIMS: High-mobility group box 1 (HMGB1) is a nuclear protein actively secreted by immune cells and passively released by necrotic cells that initiates pro-inflammatory signalling through binding to the receptor for advance glycation end-products. HMGB1 has been established as a key inflammatory mediator during myocardial infarction, but the proximal mechanisms responsible for myocardial HMGB1 expression and release in this setting remain unclear. Here, we investigated the possible involvement of peroxynitrite, a potent cytotoxic oxidant formed during myocardial infarction, on these processes. METHODS AND RESULTS: The ability of peroxynitrite to induce necrosis and HMGB1 release in vitro was evaluated in H9c2 cardiomyoblasts and in primary murine cardiac cells (myocytes and non-myocytes). In vivo, myocardial HMGB1 expression and nitrotyrosine content (a marker of peroxynitrite generation) were determined following myocardial ischaemia and reperfusion in rats, whereas peroxynitrite formation was inhibited by two different peroxynitrite decomposition catalysts: 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (III) (FeTPPS) or Mn(III)-tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP). In all types of cells studied, peroxynitrite (100 μM) elicited significant necrosis, the loss of intracellular HMGB1, and its passive release into the medium. In vivo, myocardial ischaemia-reperfusion induced significant myocardial necrosis, cardiac nitrotyrosine formation, and marked overexpression of myocardial HMGB1. FeTPPS reduced nitrotyrosine, decreased infarct size, and suppressed HMGB1 overexpression, an effect that was similarly obtained with MnTBAP. CONCLUSION: These findings indicate that peroxynitrite represents a key mediator of HMGB1 overexpression and release by cardiac cells and provide a novel mechanism linking myocardial oxidative/nitrosative stress with post-infarction myocardial inflammation
    corecore